
Machine Learning 1
Lecture 8.2 - Supervised Learning

Neural Networks - Universal Approximators

Erik Bekkers

(Bishop 5.1)

Image credit: Kirillm | Getty Images

Slide credits: Patrick Forré and
Rianne van den Berg

Machine Learning 1 2

NN: Universal Approximators

• Let be any continuous function on a compact area of

• Let any fixed analytic function which is not polynomial (e.g.
logistic function, tanh function, …).

Given any small number of an acceptable error, we can find
a number M and weights and such that:

with

Caution: for smaller we usually need larger

Theorem: Universal Approximators

| f(x) − y(x, W(1), w(2)) | < ϵ

f ℝD

h

ϵ > 0
w(2) ∈ ℝM W(1) ∈ ℝM×D

ϵ M

y(x, W(1), w(2)) =
M

∑
m=0

w(2)
m h (

D

∑
d=0

w(1)
mdxd)

✓
activation fu

admin

Machine Learning 1 3

Neural Networks with ReLU
Learned basis functions with ReLU

Leads to piece-wise linear (PWL) functions

Approximation with ReLU NNs/PWL functions

= max Co , a)

"

↳x)

i÷±ET

Machine Learning 1

‣ Take a neural net with L layers.

‣ Take a more shallow neural net with L’ < L layers.

‣ Approximate the deep neural net with shallow neural net up
to error %

‣ Usually number of units M(%) of shallow net scales

exponentially for decreasing %!

4

Deep Neural Nets and Shallow Neural Nets

Machine Learning 1

‣ Expressive power of ReLU-DNN = number of linear regions

‣ Polynomial in width, but exponential with depth

‣ With fixed network capacity

‣ Most expressive power is gained by going deeper with less
neurons per layer than staying shallow with more neurons
per layer.

regions ≈ widthdepth⋅D

parameters ≈ width2 ⋅ depth

5

Expressive power ReLU networks

← input dim D

Machine Learning 1

(a)

(b)

(c)

(d)

✦ N=50 datapoints

✦ MLP: 2 layers, 3 hidden units
with tanh activation function. 1
linear output unit.

✦ Hidden unit outputs: dashed
curves

6

Example: Function Approximations
Illustration of the ca-

pability of a multilayer perceptron
to approximate four different func-

, (b)
|,
)

is the Heaviside step function. In
data points,

shown as blue dots, have been sam-
over the interval

and the corresponding val-
evaluated. These data

points are then used to train a two-
layer network having 3 hidden units

’ activation functions and
linear output units. The resulting
network functions are shown by the
red curves, and the outputs of the
three hidden units are shown by the

(a) (b)

(c) (d)

Figure: MLP approximating four different functions (red
curves) (Bishop 5.3)

f(x) = x2

f(x) = sin(

f(x) = |x|

f(x) =

LCN = ×
'

sin Cx)

thx)

Machine Learning 1 7

Example: Function Approximations
Piece-wise linear approximation with 2-layer NN

M=3 hidden units M=20 hidden units

with RelU

Machine Learning 1

MLP:
‣ 2 layers

‣ # of inputs:

‣ 2 hidden units with
tanh activation function

‣ # of outputs:

‣ Output activation
function:

‣ Red line: MLP decision
boundary

‣ Green line: optimal
decision boundary
from synthetic data
distribution

8

Example: Classification with Neural Nets232 5. NEURAL NETWORKS

Figure 5.4 Example of the solution of a simple two-
class classification problem involving
synthetic data using a neural network
having two inputs, two hidden units with
‘tanh’ activation functions, and a single
output having a logistic sigmoid activa-
tion function. The dashed blue lines
show the z = 0.5 contours for each of
the hidden units, and the red line shows
the y = 0.5 decision surface for the net-
work. For comparison, the green line
denotes the optimal decision boundary
computed from the distributions used to
generate the data.

−2 −1 0 1 2

−2

−1

0

1

2

3

symmetries, and thus any given weight vector will be one of a set 2M equivalent
weight vectors .

Similarly, imagine that we interchange the values of all of the weights (and the
bias) leading both into and out of a particular hidden unit with the corresponding
values of the weights (and bias) associated with a different hidden unit. Again, this
clearly leaves the network input–output mapping function unchanged, but it corre-
sponds to a different choice of weight vector. For M hidden units, any given weight
vector will belong to a set of M ! equivalent weight vectors associated with this inter-
change symmetry, corresponding to the M ! different orderings of the hidden units.
The network will therefore have an overall weight-space symmetry factor of M !2M .
For networks with more than two layers of weights, the total level of symmetry will
be given by the product of such factors, one for each layer of hidden units.

It turns out that these factors account for all of the symmetries in weight space
(except for possible accidental symmetries due to specific choices for the weight val-
ues). Furthermore, the existence of these symmetries is not a particular property of
the ‘tanh’ function but applies to a wide range of activation functions (Ku̇rková and
Kainen, 1994). In many cases, these symmetries in weight space are of little practi-
cal consequence, although in Section 5.7 we shall encounter a situation in which we
need to take them into account.

5.2. Network Training

So far, we have viewed neural networks as a general class of parametric nonlinear
functions from a vector x of input variables to a vector y of output variables. A
simple approach to the problem of determining the network parameters is to make an
analogy with the discussion of polynomial curve fitting in Section 1.1, and therefore
to minimize a sum-of-squares error function. Given a training set comprising a set
of input vectors {xn}, where n = 1, . . . , N , together with a corresponding set of

Figure: MLP for classification with 2 classes (Bishop5.4)

• Class , • class 2

:
a. sigmoid

paid? petty

