

Lecture 7.2 - Supervised Learning
Classification - Probabilistic Discriminative
Models - Logistic Regression

Erik Bekkers

(Bishop 4.3.2)

Slide credits: Patrick Forré and Rianne van den Berg

Classification Strategies

Discriminant functions

Direct mapping of input to target

Probabilistic discriminative models

Posterior class probabilities: PCCk 15)

Class-conditional densities:

$$p(X | C_k)$$
 bayes

Prior class probabilities:

Probabilistic generative models
$$p(X, Ck)$$
 ass-conditional densities: $p(X|Ck)$ $p(Ck)$ rior class probabilities:

Logistic Regression for Two Classes

- Given: Dataset $\mathbf{X}=(\mathbf{x}_1,...,\mathbf{x}_N)^T$ with binary targets $\mathbf{t}=(t_1,...,t_N)^T$ with $t_n\in\{\mathcal{C}_1,\mathcal{C}_2\}=\{1,0\}$
- Basis functions $\phi = \phi(\mathbf{x}) = (\phi_0 \zeta \chi)$, $\phi_{M-1} \zeta \chi$
- Probabilistic Discriminative Linear Models: posteriors $p(C_k|\phi)$ are nonlinear functions with a linear function of ϕ as input.

$$p(\mathcal{C}_k|\boldsymbol{\phi},\mathbf{w}) = f(\mathbf{w}^T\boldsymbol{\phi})$$

$$p(\mathcal{C}_k|\boldsymbol{\phi},\mathbf{w}) = f(\mathbf{w}^T\boldsymbol{\phi})$$

$$p(\mathcal{C}_1|\boldsymbol{\phi},\mathbf{w}) = y(\boldsymbol{\phi}) = \sigma(\mathbf{w}^T\boldsymbol{\phi})$$

$$p(\mathcal{C}_2|\boldsymbol{\phi},\mathbf{w}) = 1 - y(\boldsymbol{\phi}) = 1 - \sigma(\mathbf{w}^T\boldsymbol{\phi})$$

$$p(t|\boldsymbol{\phi},\mathbf{w}) = y(\boldsymbol{\phi})^t (1 - y(\boldsymbol{\phi}))^{1-t}$$

Machine Learning 1

Logistic Regression for Two Classes

 $W, \phi \in \mathbb{R}^{M}$

Logistic Regression:

$$p(\mathcal{C}_1|\boldsymbol{\phi},\mathbf{w}) = \sigma(\mathbf{w}^T\boldsymbol{\phi})$$
 $p(\mathcal{C}_2|\boldsymbol{\phi},\mathbf{w}) = 1 - \sigma(\mathbf{w}^T\boldsymbol{\phi})$ # parameters: $\underline{\mathbf{w}}:\mathcal{M}$ like as $\underline{\mathbf{w}}$ and $\underline{\mathcal{M}}$

Gaussian conditional densities:

$$p(\mathbf{x}|\mathcal{C}_k) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}_k|^{1/2}} \exp\left\{\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right\}$$

class priors $p(\mathcal{C}_k)$

quadratically with M

Logistic Regression for Two Classes

- ullet Given: Dataset $\mathbf{X} = (\mathbf{x}_1,...,\mathbf{x}_N)^T$ with binary targets $\mathbf{t} = (t_1, ..., t_N)^T$ with $t_n \in \{C_1, C_2\} = \{1, 0\}$
- Conditional likelihood function:

$$p(\mathbf{t}|\mathbf{X},\mathbf{w}) = \iint_{h=1}^{\infty} p(t_n | \mathbf{x}_n, \mathbf{w}) = \iint_{h=1}^{\infty} \mathbf{y}^{h} \left(1 - \mathbf{y}_n\right)^{1 - 6n}$$

$$y_n = p(\mathcal{C}_1|\boldsymbol{\phi}_n) = o(\mathbf{w}^{\top}\boldsymbol{\phi}_n) \qquad \boldsymbol{\phi}_n = \boldsymbol{\phi}(\mathbf{x}_n)$$

Maximizing the conditional likelihood/minimizing the cross-entropy
$$E(\mathbf{w}) = -\ln p(\mathbf{t}|\mathbf{X},\mathbf{w}) = \sum_{n=1}^{N} t_n \ln y_n + (1-t_n) \ln (1-y_n)$$

$$E(\mathbf{w}): \text{ convex, but no closed form solution!}$$

$$y_n = \sigma(\mathbf{w}^T \boldsymbol{\phi}_n)$$
 is nonlinear in \mathbf{w}

The cross-entropy loss $E_n(\mathbf{w}) = -\left[t_n \ln(y_n) + (1 - t_n) \ln(1 - y_n)\right]$

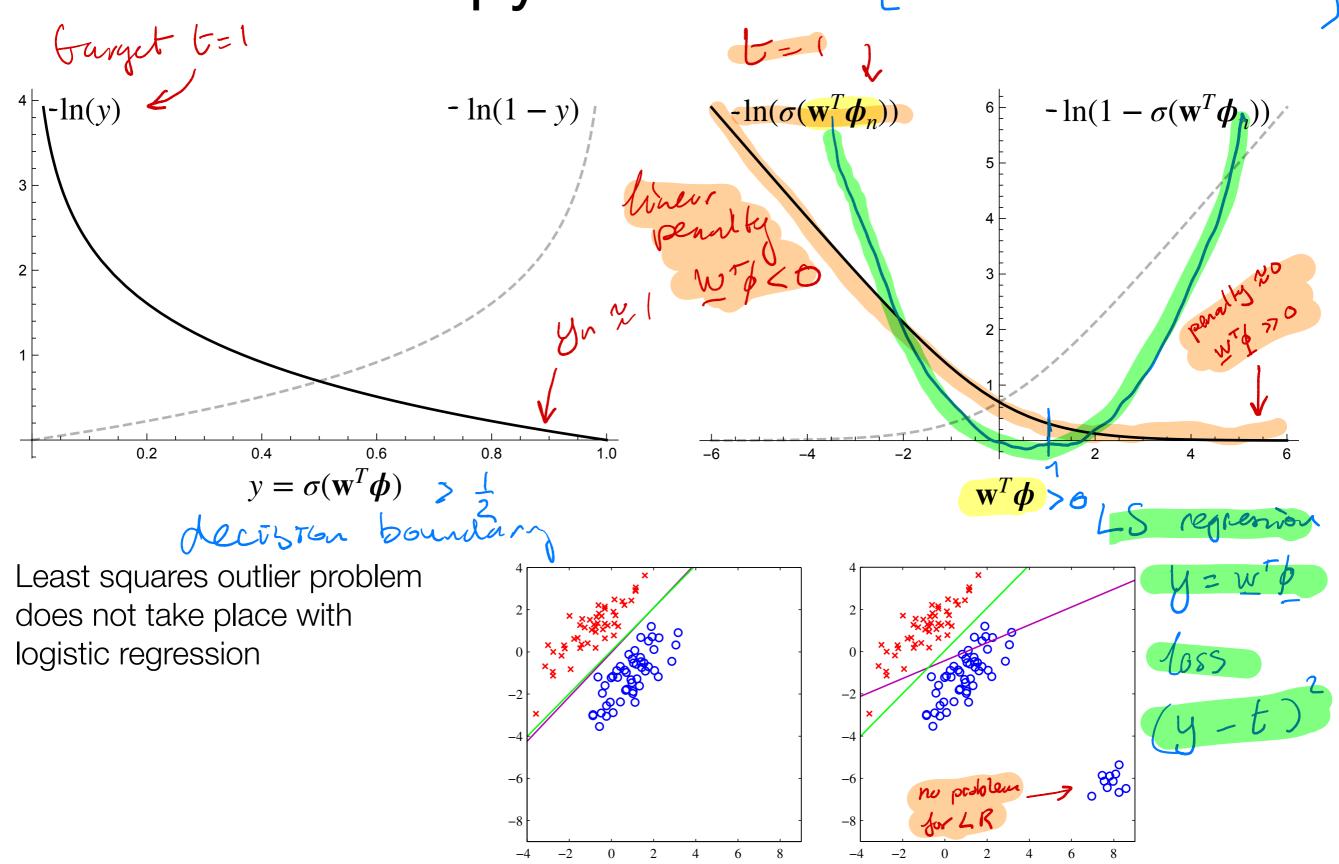


Figure: least squares is very sensitive to outliers (Bishop 4.4)

Classification with Logistic Regression

- Parameter $\mathbf{X}=(\mathbf{x}_1,...,\mathbf{x}_N)^T$ with targets $\mathbf{t}=(t_1,...,t_N)^T$ with $t_n\in\{\mathcal{C}_1,\mathcal{C}_2\}=\{1,0\}$
- Basis functions $\phi(\mathbf{x}) = (\phi_0(\mathbf{x}), ..., \phi_{M-1}(\mathbf{x}))^T$
- Posterior distributions: $p(C_1|\mathbf{x}, \mathbf{w}) = \sigma(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}))$
- Minimize $E(\mathbf{w}) = -\ln p(\mathbf{t}|\mathbf{X},\mathbf{w}) = -\sum_{n=1}^{\infty} t_n \ln y_n + (1-t_n) \ln (1-y_n)$ with stochastic gradient descent or iterative reweighted least squares, to find \mathbf{w}^*
- Decision boundaries:

W *T & CX) = 0