Machine Learning 1
Lecture 6.5 - Supervised Learning
Classification - Discriminative Models - The Perceptron

Erik Bekkers

(Bishop 4.1.7)
The Perceptron Algorithm

- Input: \(\mathbf{x} \in \mathbb{R}^D \)
- Targets: \(t \in \{ C_1, C_2 \} \rightarrow t \in \{-1, 1\} \) 2 classes
- Prediction: \(y(x) = f(w^T \phi(x)) \quad f(a) = \begin{cases} 1, & a \geq 0 \\ -1, & a < 0 \end{cases} \)
- Class decisions: assign \(\mathbf{x} \) to class \(C_1 \) if …… \(\mathbf{w}^T \phi_n > 0 \) (and \(C_{-1} \) if \(\mathbf{w}^T \phi_n < 0 \))
- For correct classification: find \(\mathbf{w} \) such that for all \((x_n, t_n)\):
 \[\mathbf{w}^T \phi_n t_n \geq 0 \]
- Perceptron criterion: \(E_P(w) = - \sum_{n \in \mathcal{M}} w^T \phi(x_n) t_n \)
 \(\mathcal{M} : \{ n : \mathbf{w}^T \phi_n t_n < 0 \} \)
Perceptron: Stochastic Gradient Descent

- \(E_P(w) = -\sum_{n \in M} w^T \phi(x_n) t_n \)
 \[= \sum_{n \in M} E_n(w) \]

- Stochastic Gradient Descent (SGD).
 For each misclassified \(x_n \):

 \[w^{(\tau+1)} = w^{(\tau)} - \eta \nabla E_n(w) \]
 \[= w^{(\tau)} + \eta (\phi_n b_n) \]

- If \(X \) is linearly separable, then perceptron SGD will converge

Figure: for \(x_n \) in \(C_1 \): add \(\phi(x_n) \) to \(w \), for \(x_n \) in \(C_2 \): subtract \(\phi(x_n) \) from \(w \). SGD for perceptron criterion (Bishop 4.7)
Problems: Perceptron

- Perceptron only works for 2 classes

- There might be many solutions depending on the initialization of \mathbf{w} and on the order in which data is presented in SGD

- If dataset is not linearly separable, the perceptron algorithm will not converge.

- Based on linear combination of fixed basis functions.