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Lecture 6.4 - Supervised Learning

Classification - Discriminative Models - Least 
Squares Regression
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‣ Each class Ck has its own linear model: 

‣ Shorter notation:  

‣ Matrix        : column k contains   

‣ Vector  

‣ Vector                                                  

‣ Assign x to class Ck if 
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Least Squares for Classification
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‣ Data set:   N x (D+1) data matrix, N x K target matrix 

‣ Use sum-of-squares regression error function 

‣ Minimize                   as a function of        :  

‣ Solution:  

‣ Discriminant function: 
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Least Squares for Classification (II)
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1. The decision boundaries are very sensitive to outliers 

2. For K>2 some decision regions can become very small or are even completely ignored  

3. The components of                    are not real probabilities! 

‣    

‣ if 
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Least Squares for Classification: Problems
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Figure: least squares is very sensitive to outliers (Bishop 4.4)
−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Figure: masking for least 
squares for K>2 (Bishop 4.5)
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