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| east Squares for Classification (<)

» Each class Ck has its own linear model:

Yr(X) = WZX + Wk

Shorter notation: ¥(x) = W'x
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Least Squares for Classification ()

» Data set:;
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Ep(W) ==Tr [(Xw —T)T(XW — T)}
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Minimize Ep(W)
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Use sum-of-squares regression error function
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as a function of W :
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Solution: Wy g = (XTX) X't =X'T

N x (D+1) data matrix, N x K target matrix
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Discriminant function:  YLS (X) — WLS X
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Least Squares for Classification: Problems
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Figure: least squares is very sensitive to outliers (Bishop 4.4) Figure: masking for least
| N | quares for K>2 (Bishop 4.5)
1. The decision boundaries are very sensitive to outliers IS W\(

2. For K>2 some decision regions can become very small or are even completely ignored

3. The components of y1,5(X) are not real probabilities!
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