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‣ Class-conditional densities: 

‣ Prior class probabilities: 

‣ Joint distribution: 

‣ Posterior distribution: K=2 

‣

2

Probabilistic Generative Models: K=2
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Logistic Sigmoid Function

Figure: Logistic Sigmoid function (red) (Bishop 4.9)

�(a) =
1

1 + exp(�a)

�(�a) = 1� �(a)

�0(a) = �(a)(1� �(a))

4.2. Probabilistic Generative Models 197

Figure 4.9 Plot of the logistic sigmoid function
σ(a) defined by (4.59), shown in
red, together with the scaled pro-
bit function Φ(λa), for λ2 = π/8,
shown in dashed blue, where Φ(a)
is defined by (4.114). The scal-
ing factor π/8 is chosen so that the
derivatives of the two curves are
equal for a = 0.
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approach in which we model the class-conditional densities p(x|Ck), as well as the
class priors p(Ck), and then use these to compute posterior probabilities p(Ck|x)
through Bayes’ theorem.

Consider first of all the case of two classes. The posterior probability for class
C1 can be written as

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
= σ(a) (4.57)

where we have defined

a = ln
p(x|C1)p(C1)
p(x|C2)p(C2)

(4.58)

and σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
(4.59)

which is plotted in Figure 4.9. The term ‘sigmoid’ means S-shaped. This type of
function is sometimes also called a ‘squashing function’ because it maps the whole
real axis into a finite interval. The logistic sigmoid has been encountered already
in earlier chapters and plays an important role in many classification algorithms. It
satisfies the following symmetry property

σ(−a) = 1 − σ(a) (4.60)

as is easily verified. The inverse of the logistic sigmoid is given by

a = ln
( σ

1 − σ

)
(4.61)

and is known as the logit function. It represents the log of the ratio of probabilities
ln [p(C1|x)/p(C2|x)] for the two classes, also known as the log odds.
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‣ For multiple classes (general K): 

‣   

‣  Softmax:  if                      for all              :  

‣ Note: for K=2: 

4

Probabilistic Generative Models: general K

ak = ln(p(x|Ck)p(Ck))
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‣ Gaussian Class-conditional densities: 

‣ Assume shared covariance matrix:  

‣ K=2 classes: 

‣ Generalized Linear Model: 

5

Class Conditional Densities: Continuous 
Inputs

p(x|Ck) =
1
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Example: Linear Discriminant Analysis for K=24.2. Probabilistic Generative Models 199

Figure 4.10 The left-hand plot shows the class-conditional densities for two classes, denoted red and blue.
On the right is the corresponding posterior probability p(C1|x), which is given by a logistic sigmoid of a linear
function of x. The surface in the right-hand plot is coloured using a proportion of red ink given by p(C1|x) and a
proportion of blue ink given by p(C2|x) = 1 − p(C1|x).

decision boundaries correspond to surfaces along which the posterior probabilities
p(Ck|x) are constant and so will be given by linear functions of x, and therefore
the decision boundaries are linear in input space. The prior probabilities p(Ck) enter
only through the bias parameter w0 so that changes in the priors have the effect of
making parallel shifts of the decision boundary and more generally of the parallel
contours of constant posterior probability.

For the general case of K classes we have, from (4.62) and (4.63),

ak(x) = wT
k x + wk0 (4.68)

where we have defined

wk = Σ−1µk (4.69)

wk0 = −1
2
µT

k Σ−1µk + ln p(Ck). (4.70)

We see that the ak(x) are again linear functions of x as a consequence of the cancel-
lation of the quadratic terms due to the shared covariances. The resulting decision
boundaries, corresponding to the minimum misclassification rate, will occur when
two of the posterior probabilities (the two largest) are equal, and so will be defined
by linear functions of x, and so again we have a generalized linear model.

If we relax the assumption of a shared covariance matrix and allow each class-
conditional density p(x|Ck) to have its own covariance matrix Σk, then the earlier
cancellations will no longer occur, and we will obtain quadratic functions of x, giv-
ing rise to a quadratic discriminant. The linear and quadratic decision boundaries
are illustrated in Figure 4.11.
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Figure 4.10 The left-hand plot shows the class-conditional densities for two classes, denoted red and blue.
On the right is the corresponding posterior probability p(C1|x), which is given by a logistic sigmoid of a linear
function of x. The surface in the right-hand plot is coloured using a proportion of red ink given by p(C1|x) and a
proportion of blue ink given by p(C2|x) = 1 − p(C1|x).

decision boundaries correspond to surfaces along which the posterior probabilities
p(Ck|x) are constant and so will be given by linear functions of x, and therefore
the decision boundaries are linear in input space. The prior probabilities p(Ck) enter
only through the bias parameter w0 so that changes in the priors have the effect of
making parallel shifts of the decision boundary and more generally of the parallel
contours of constant posterior probability.

For the general case of K classes we have, from (4.62) and (4.63),

ak(x) = wT
k x + wk0 (4.68)

where we have defined

wk = Σ−1µk (4.69)

wk0 = −1
2
µT

k Σ−1µk + ln p(Ck). (4.70)

We see that the ak(x) are again linear functions of x as a consequence of the cancel-
lation of the quadratic terms due to the shared covariances. The resulting decision
boundaries, corresponding to the minimum misclassification rate, will occur when
two of the posterior probabilities (the two largest) are equal, and so will be defined
by linear functions of x, and so again we have a generalized linear model.

If we relax the assumption of a shared covariance matrix and allow each class-
conditional density p(x|Ck) to have its own covariance matrix Σk, then the earlier
cancellations will no longer occur, and we will obtain quadratic functions of x, giv-
ing rise to a quadratic discriminant. The linear and quadratic decision boundaries
are illustrated in Figure 4.11.

Figure: Left: class conditional densities p(x | Ck). Right: posterior 
P(C1|x) as sigmoid of linear function of x.  (Bishop 4.9)
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‣ Gaussian Class-conditional densities & fixed covariance: 

‣ Posterior distributions:  

‣    

‣ Decision boundary:  

‣ If all covariance matrices are different                     then  

             will also contain quadratic terms in x 

7

Linear Discriminant Analysis: General K
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Example: LDA and QDA
200 4. LINEAR MODELS FOR CLASSIFICATION
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Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian
distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix.
The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents
the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that
the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas
those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution
Once we have specified a parametric functional form for the class-conditional

densities p(x|Ck), we can then determine the values of the parameters, together with
the prior class probabilities p(Ck), using maximum likelihood. This requires a data
set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional
density with a shared covariance matrix, and suppose we have a data set {xn, tn}
where n = 1, . . . , N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We
denote the prior class probability p(C1) = π, so that p(C2) = 1− π. For a data point
xn from class C1, we have tn = 1 and hence

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ).

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(C2)p(xn|C2) = (1 − π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[πN (xn|µ1,Σ)]tn [(1 − π)N (xn|µ2,Σ)]1−tn (4.71)

where t = (t1, . . . , tN )T. As usual, it is convenient to maximize the log of the
likelihood function. Consider first the maximization with respect to π. The terms in

Figure: Left: Gaussian class conditional densities p(x | Ck), red 
and green have same covariance matrix. Right: posterior P(Ck |x) 

distributions (RGB vectors) and decision boundaries. (Bishop 
4.9)
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