Machine Learning 1
Lecture 5.5 - Supervised Learning
Classification - Decision Theory

Erik Bekkers

(Bishop 1.5)
Decision theory

- Dataset: Input vectors \(\mathbf{x} \in \mathbb{R}^D \), ground truth targets \(t \in \{ C_1, \ldots, C_k \} \)
- Divide input space \(\mathbb{R}^D \) into \(K \) decision regions \(\mathcal{R}_k, \ k = 1, \ldots, K \)
- Every observed datapoint

\[
\text{ground truth } b_n = C_i \\
\text{prediction } \hat{t}_n = C_k \quad (\hat{t}_n \notin \mathcal{R}_k)
\]

- Confusion matrix: ground truth classes vs. predicted classes

\[
\begin{pmatrix}
C_1 & \mathcal{R}_1 & 6 & 1 & \ldots & 0 \\
C_2 & \mathcal{R}_2 & 5 & 3 & \ldots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
C_K & \mathcal{R}_K & 2 & 0 & \ldots & 8
\end{pmatrix}
\]

- Diagonal elements: correctly classified
- Off-diagonal elements: misclassified
Decision theory: Misclassification Rate

- Classification goal: Minimize the misclassification rate

- Assume observations are drawn from joint distribution $p(x, t)$

- Probability of a misclassification:

 $$p(\text{mistake}) = \sum_{i=1}^{K} \sum_{k \neq i} p(x \in R_i, C_k)$$

 $$= 1 - \sum_{k=1}^{K} p(x \in R_k, C_k)$$

Minimizing misclassification rate

- Assign x to class C_k if

 $$p(x, t = C_k) > p(x, t = C_j), j \neq k$$

- Note: $p(x, C_k) = p(C_k|x)p(x)$

 - Check for the largest posterior class prob

 $$p(C_k|x) > p(C_j|x), j \neq k$$
Decision theory: Misclassification Rate

\(\hat{x} \) : Decision boundary

\(x_0 \) : Optimal Decision boundary

\(p(x, C_1) = p(x, C_2) \)

Figure: joint probability distributions and decision boundary (Bishop 1.24)
Minimizing the Misclassification Rate: Problems

• Not all errors have the same impact!

Example: Medical diagnosis of cancer

• Error 1: Label a healthy person as having cancer.

• Error 2: Label a sick person as healthy. Lack of treatment!

• If cancer only occurs in 1% of all patients, a classifier which labels everyone as healthy has a misclassification rate of 1%!

Class Imbalance
Possible solution: use different weights for different error types

\[L = \begin{pmatrix}
 0 & 1000 \\
 1 & 0
\end{pmatrix} \]

Expected loss: \(\mathbb{E}[L] = \sum_{k, j} L_{kj} \int_{\mathbb{R}_j} p(x, C_k) dx \)

Minimize expected loss:

Assign \(x \) to \(C_k \) if \(\sum_{j=1}^{K} L_{jk} p(x, C_j) \) is minimal.
Classification Strategies

1. **Discriminant functions**
 Direct mapping of input to target \(t = y(x, w) \)

2. **Probabilistic discriminative models**
 Posterior class probabilities:
 \[
 p(C_k | x) \]

3. **Probabilistic generative models**
 Class-conditional densities:
 \[p(x | C_k) \]
 Prior class probabilities:
 \[p(C_k) \]
 \[
 \begin{align*}
 1. & \quad p(x, C_k) = p(x | C_k) p(C_k) \\
 2. & \quad p(C_k | x) = \frac{p(x | C_k) p(C_k)}{p(x)}
 \end{align*}
 \]