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‣ Input: 

‣ Target:   

‣ 2-class targets: 

‣ Multi-class targets 

Strategy:  

‣ Divide input space         into K decision regions. 

‣ Assign each decision region to a class 

‣ Boundaries of decision regions are called decision boundaries/surfaces.
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Classification through decision regions
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Classification through Decision Regions34 1. INTRODUCTION

Figure 1.19 Scatter plot of the oil flow data
for input variables x6 and x7, in
which red denotes the ‘homoge-
nous’ class, green denotes the
‘annular’ class, and blue denotes
the ‘laminar’ class. Our goal is
to classify the new test point de-
noted by ‘×’.
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of high dimensionality comprising many input variables. As we now discuss, this
poses some serious challenges and is an important factor influencing the design of
pattern recognition techniques.

In order to illustrate the problem we consider a synthetically generated data set
representing measurements taken from a pipeline containing a mixture of oil, wa-
ter, and gas (Bishop and James, 1993). These three materials can be present in one
of three different geometrical configurations known as ‘homogenous’, ‘annular’, and
‘laminar’, and the fractions of the three materials can also vary. Each data point com-
prises a 12-dimensional input vector consisting of measurements taken with gamma
ray densitometers that measure the attenuation of gamma rays passing along nar-
row beams through the pipe. This data set is described in detail in Appendix A.
Figure 1.19 shows 100 points from this data set on a plot showing two of the mea-
surements x6 and x7 (the remaining ten input values are ignored for the purposes of
this illustration). Each data point is labelled according to which of the three geomet-
rical classes it belongs to, and our goal is to use this data as a training set in order to
be able to classify a new observation (x6, x7), such as the one denoted by the cross
in Figure 1.19. We observe that the cross is surrounded by numerous red points, and
so we might suppose that it belongs to the red class. However, there are also plenty
of green points nearby, so we might think that it could instead belong to the green
class. It seems unlikely that it belongs to the blue class. The intuition here is that the
identity of the cross should be determined more strongly by nearby points from the
training set and less strongly by more distant points. In fact, this intuition turns out
to be reasonable and will be discussed more fully in later chapters.

How can we turn this intuition into a learning algorithm? One very simple ap-
proach would be to divide the input space into regular cells, as indicated in Fig-
ure 1.20. When we are given a test point and we wish to predict its class, we first
decide which cell it belongs to, and we then find all of the training data points that
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Figure 1.20 Illustration of a simple approach
to the solution of a classification
problem in which the input space
is divided into cells and any new
test point is assigned to the class
that has a majority number of rep-
resentatives in the same cell as
the test point. As we shall see
shortly, this simplistic approach
has some severe shortcomings.
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fall in the same cell. The identity of the test point is predicted as being the same
as the class having the largest number of training points in the same cell as the test
point (with ties being broken at random).

There are numerous problems with this naive approach, but one of the most se-
vere becomes apparent when we consider its extension to problems having larger
numbers of input variables, corresponding to input spaces of higher dimensionality.
The origin of the problem is illustrated in Figure 1.21, which shows that, if we divide
a region of a space into regular cells, then the number of such cells grows exponen-
tially with the dimensionality of the space. The problem with an exponentially large
number of cells is that we would need an exponentially large quantity of training data
in order to ensure that the cells are not empty. Clearly, we have no hope of applying
such a technique in a space of more than a few variables, and so we need to find a
more sophisticated approach.

We can gain further insight into the problems of high-dimensional spaces by
returning to the example of polynomial curve fitting and considering how we wouldSection 1.1

Figure 1.21 Illustration of the
curse of dimensionality, showing
how the number of regions of a
regular grid grows exponentially
with the dimensionality D of the
space. For clarity, only a subset of
the cubical regions are shown for
D = 3.
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Figures: 3 class problem with decision boundaries. (Bishop 1.19 & 1.20)
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‣ Linear Classification: consider only linear  decision boundaries 

‣ For D - dimensional input space:                                               
decision surface is a           dimensional hyperplane 

‣ Datasets whose classes can be separated exactly by linear decision 
surfaces are called 
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Linear Classification
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Figure: Linearly separable dataset (Bishop 4.5) Figure: Not linearly separable dataset (Bishop 1.19)
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‣ K=2 classes:  

‣ 1 classifier determines  

‣ Multiple classes: K > 2 

‣ K-1 classifiers:  

‣ One-versus-the-rest 
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Multiple Classes (K > 2)
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Figure: one-versus-the-rest classifiers (Bishop 4.2)
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‣ K(K-1)/2 classifiers:  

‣ Points are classified according to 
majority vote of classifiers 

‣ one-versus-one 

‣ Solution: Make one K-class classifier! 
(See later)
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Multiple Classes (K > 2)
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Figure: one-versus-one classifiers (Bishop 4.2)
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