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Classification - Decision Regions
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Classification through decision regions

v Input: x = (21, ...,2p) "

» Target: (éé i CUCZ) -W)Cwi
_ b = |
» 2-class targets: C ,«C( (Z;Cz == t -0,
! 0
»  Multi-class targets Q,\f). K=S ) 6 ‘/@3 < C|’
0
Strategy: 5

» Divide input space R”into K decision regions. Kk
%

» Assign each decision region to a class C 3

» Boundaries of decision regions are called decision boundaries/surfaces.
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Classification through Decision Regions
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Figures: 3 class problem with decision boundaries. (Bishop 1.19 & 1.20)
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Linear Classification

» Linear Classification: consider only linear decision boundaries

» For D - dimensional input space: ¢ & /2 P
decision surface is a [O—( dimensional hyperplane

» Datasets whose classes can be separated exactly by linear decision
surfaces are called %m,w; i (?] Bz\pm%%
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Figure: Linearly separable dataset (Bishop 4.5) Figure: Not linearly sep;r6able dataset (Bishop 1.19)
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Multiple Classes (K >2) | ¢ 2¢=;

» K=2 classes:

L - - = ?
» 1 classifier determines ‘6 “C) ( b=C '
»  Multiple classes: K > 2 R
- RQ
» K-1 classifiers: [?Ck ) g ?/Ck
C1
»  One-versus-the-rest R3 -
2
not Cq
not Co

Figure: one-versus-the-rest classifiers (Bishop 4.2)
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Multiple Classes (K > 2)

4

K(K-1)/2 classifiers: (/,. (%) U= (. or =G

Cs
Points are classified according to C1
majority vote of classifiers JPhe
ONe-versus-one - ~ G\ -7
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Solution: Make one K-class classifier! VG
(See later) \

Figure: one-versus-one classifiers (Bishop 4.2)
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