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‣ Given L models               with prior belief  

‣ Update prior knowledge with observations on the data D :  

‣ Predictive distribution / mixture distribution / model average: 

‣ Approximation: Use most probable model for predictions
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Bayesian Model Selection
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‣ Model selection 

‣ Comparing two models        and        : 

‣ When quotient of priors              is known or close to 1, then 
we need 

‣ Model evidence / marginal likelihood:

3

Bayesian Model Comparison

p(D|Mi) =

Z
p(D|w,Mi)p(w|Mi)dw

M1 M2

M⇤ = argmax
Mi

p(Mi|D) = argmax
Mi

p(D|Mi)p(Mi)

p(M1|D)

p(M2|D)
=
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‣ Model evidence / marginal likelihood for single parameter w 

‣ Note that               is the normalization constant of  

‣ If posterior                      is sharply peaked at             with   
width 

‣   
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Approximated Model Evidence

p(D|Mi) =

Z
p(D|w,Mi)p(w|Mi)dw

p(w|D,Mi) wMAP

�wposterior

p(D|Mi) =

Z
p(D|w,Mi)p(w|Mi)dw ⇡

ln p(D|Mi) ⇡ ln p(D|wMAP,Mi) + ln
�wposterior

�wprior

3.4. Bayesian Model Comparison 163

Figure 3.12 We can obtain a rough approximation to
the model evidence if we assume that
the posterior distribution over parame-
ters is sharply peaked around its mode
wMAP.

∆wposterior

∆wprior

wMAP w

and so taking logs we obtain

ln p(D) ! ln p(D|wMAP) + ln
(

∆wposterior

∆wprior

)
. (3.71)

This approximation is illustrated in Figure 3.12. The first term represents the fit to
the data given by the most probable parameter values, and for a flat prior this would
correspond to the log likelihood. The second term penalizes the model according to
its complexity. Because ∆wposterior < ∆wprior this term is negative, and it increases
in magnitude as the ratio ∆wposterior/∆wprior gets smaller. Thus, if parameters are
finely tuned to the data in the posterior distribution, then the penalty term is large.

For a model having a set of M parameters, we can make a similar approximation
for each parameter in turn. Assuming that all parameters have the same ratio of
∆wposterior/∆wprior, we obtain

ln p(D) ! ln p(D|wMAP) + M ln
(

∆wposterior

∆wprior

)
. (3.72)

Thus, in this very simple approximation, the size of the complexity penalty increases
linearly with the number M of adaptive parameters in the model. As we increase
the complexity of the model, the first term will typically decrease, because a more
complex model is better able to fit the data, whereas the second term will increase
due to the dependence on M . The optimal model complexity, as determined by
the maximum evidence, will be given by a trade-off between these two competing
terms. We shall later develop a more refined version of this approximation, based on
a Gaussian approximation to the posterior distribution.Section 4.4.1

We can gain further insight into Bayesian model comparison and understand
how the marginal likelihood can favour models of intermediate complexity by con-
sidering Figure 3.13. Here the horizontal axis is a one-dimensional representation
of the space of possible data sets, so that each point on this axis corresponds to a
specific data set. We now consider three models M1, M2 and M3 of successively
increasing complexity. Imagine running these models generatively to produce exam-
ple data sets, and then looking at the distribution of data sets that result. Any given

Figure: model evidence (Bishop 3.12)
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‣   

‣ if                                  then   

‣ M parameters:   

‣ Model evidence favors models of 
medium complexity!
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Approximated Model Evidence
ln p(D|Mi) ⇡ ln p(D|wMAP,Mi) + ln

�wposterior

�wprior

ln
�wposterior

�wprior
< 0�wposterior < �wprior

w 2 RM

p(D|Mi) =

Z
p(D|w,Mi)p(w|Mi)dw ⇡

ln p(D|Mi) ⇡
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✦ 3 models: M1 is simplest, M3 is 
most complex 

✦ Generate datasets D from   

1. sample model parameters 
from model prior:  

2. Sample dataset 

✦ Note:  

✦ dataset D0: model M2 has highest 
model evidence 
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Model evidence: medium complexity

p(D)
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Figure: model evidence (Bishop 3.12)

w ∼ p(w |Mi)

D ∼ p(D |w, Mi)

p(D |Mi)

∫ p(D |Mi) dD = 1


