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Frequentist viewpoint of model complexity 

‣ Regression loss function:  

‣ Expected loss: 

‣ Optimal y(x) minimizes                            
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Expected Loss for Regression

L(t, y(x)) =

E[L(t, y(x))] =

E[L(t, y(x))] =
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‣ Decomposition of expected loss: 
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Expected Loss for Regression

E[L] =
Z Z

(y(x)� E[t|x] + E[t|x]� t)2 p(x, t)dtdx =

E[L] =
Z
(y(x)� E[t|x])2p(x)dx+

Z
var[t|x]p(x)dx
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‣ Optimal solution is  

‣ Only finite dataset observed:  

‣ Frequentist approach: estimate                                 based on 
dataset D 

‣ Estimate performance of learning algorithm by averaging the 
expected loss over learned           for different datasets D 
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Minimizing the Expected Loss

y(x) =

E[L] =
Z

{y(x)� E[t|x]}2p(x)dx+

Z
var[t|x]p(x)dx

yD(x) = y(x,w⇤)

yD(x)

!D[(yD(x) − ![t |x])2]
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‣  Bias-Variance decomposition: 

‣ Expected loss decomposition:  

(bias)2 =  

variance =  

noise = 
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Bias-Variance Decomposition

Z
var[t|x]p(x)dx

ED[{yD(x)� E[t|x]}2] = ED[{yD(x)� ED[yD(x)] + ED[yD(x)]� E[t|x]}2] =

=

![!D[L]] = ∫ ED[(yD(x) − ![t |x])2]p(x)dx + ∫ var[t |x]p(x)dx

![!D[L]] = (bias)2 + variance + noise§ 'e
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‣ Generate L datasets of N points: 

‣ L predictions with 24 Gaussian 
basis functions
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Bias-Variance Decomposition: Example
150 3. LINEAR MODELS FOR REGRESSION
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Figure 3.5 Illustration of the dependence of bias and variance on model complexity, governed by a regulariza-
tion parameter λ, using the sinusoidal data set from Chapter 1. There are L = 100 data sets, each having N = 25
data points, and there are 24 Gaussian basis functions in the model so that the total number of parameters is
M = 25 including the bias parameter. The left column shows the result of fitting the model to the data sets for
various values of ln λ (for clarity, only 20 of the 100 fits are shown). The right column shows the corresponding
average of the 100 fits (red) along with the sinusoidal function from which the data sets were generated (green).

Figure: bias-variance decomposition (Bishop 3.5)
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Estimate the bias and variance: 

‣   

‣  
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Bias-Variance Decomposition: Example

variance =

Z
ED[{yD(x)� ED[yD(x)]}2]p(x)dx

=

ED[yD(x)] =
1

L

LX

l=1

y(l)(x) = ȳ(x)

(bias)2 =

Z
{ED[yD(x)]� E[t|x]}2p(x)dx
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Bias-Variance Decomposition: Example
3.2. The Bias-Variance Decomposition 151

Figure 3.6 Plot of squared bias and variance,
together with their sum, correspond-
ing to the results shown in Fig-
ure 3.5. Also shown is the average
test set error for a test data set size
of 1000 points. The minimum value
of (bias)2 + variance occurs around
ln λ = −0.31, which is close to the
value that gives the minimum error
on the test data.
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fit a model with 24 Gaussian basis functions by minimizing the regularized error
function (3.27) to give a prediction function y(l)(x) as shown in Figure 3.5. The
top row corresponds to a large value of the regularization coefficient λ that gives low
variance (because the red curves in the left plot look similar) but high bias (because
the two curves in the right plot are very different). Conversely on the bottom row, for
which λ is small, there is large variance (shown by the high variability between the
red curves in the left plot) but low bias (shown by the good fit between the average
model fit and the original sinusoidal function). Note that the result of averaging many
solutions for the complex model with M = 25 is a very good fit to the regression
function, which suggests that averaging may be a beneficial procedure. Indeed, a
weighted averaging of multiple solutions lies at the heart of a Bayesian approach,
although the averaging is with respect to the posterior distribution of parameters, not
with respect to multiple data sets.

We can also examine the bias-variance trade-off quantitatively for this example.
The average prediction is estimated from

y(x) =
1
L

L∑

l=1

y(l)(x) (3.45)

and the integrated squared bias and integrated variance are then given by

(bias)2 =
1
N

N∑

n=1

{y(xn) − h(xn)}2 (3.46)

variance =
1
N

N∑

n=1

1
L

L∑

l=1

{
y(l)(xn) − y(xn)

}2
(3.47)

where the integral over x weighted by the distribution p(x) is approximated by a
finite sum over data points drawn from that distribution. These quantities, along
with their sum, are plotted as a function of lnλ in Figure 3.6. We see that small
values of λ allow the model to become finely tuned to the noise on each individual

Figure: bias-variance decomposition (Bishop 3.6)
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‣ In practice we don’t want to split our dataset into L datasets 

to determine the best model complexity  (best value of    ) 

‣ Better to keep large dataset,  

‣ Less overfitting. 

‣ Different optimal model complexity! 

‣ Bayesian regression!
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Bias-Variance decomposition
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