

UNIVERSITY OF AMSTERDAM Informatics Institute

Machine Learning 1

Lecture 3.3 - Supervised Learning Stochastic Gradient Descent

Erik Bekkers

(Bishop 3.1.3)

Slide credits: Patrick Forré and Rianne van den Berg

Stochastic gradient descent

- for N >> 1 $\mathbf{w}_{ML} = \left(\mathbf{\Phi}^T \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^T \mathbf{t}$ is very costly to compute!
 - Needs to process all data $(\mathbf{x}_1, ..., \mathbf{x}_N)$ at once.
 - Matrix inversion of M x M matrix: $O(M^3)$

Loss is a sum of error terms for each datapoint:

$$E_D(\mathbf{w}) = \sum_{i=1}^{N} E(\mathbf{x}_i, t_i, \mathbf{w})$$
$$E(\mathbf{x}_i, t_i, \mathbf{w}) = \frac{1}{2} \left(t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i) \right)^2$$

Approach for large dataset: stochastic gradient descent

approximating the total error with less data points > a way for mihimizing ED

Change herror along direction y Recap: The Gradient

• The gradient encodes all directional derivatives via scalar product $\nabla_{w} E := \frac{1}{2w} E = \left(\frac{1}{2w} + \frac{1}{2w} + \frac{1}{2w} + \frac{1}{2w} \right)$

Vy F

• The gradient is always perpendicular to the contours of a function $\{W \in \mathbb{R}^m : F(\mathcal{Y}) = C\}$

VERM directional devibutive (TE)V

The gradient always points in the direction of steepest ascent

Stochastic gradient descent

$$E_D(\mathbf{w}) = \sum_{i=1}^N E(\mathbf{x}_i, t_i, \mathbf{w})$$

- Stochastic gradient descent:
 - Initialize $\mathbf{w}^{(0)}$, choose learning rate η .

 $E(\mathbf{x}_i, t_i, \mathbf{w}) = \frac{1}{2} \left(t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i) \right)^2$

TwE

- Iterate over data points, and update $\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta (\nabla_{\mathbf{w}} E(\mathbf{x}_{i}, t_{i}, \mathbf{w}^{(\tau)}))^{T}$ $= w^{(\tau)} + \eta (\mathcal{L}_{i} - w^{(\tau)} \phi (\mathbf{x}_{i})) \phi (\mathbf{x}_{i})$
- If $E_D(\mathbf{w})$ is convex in \mathbf{w} and η is small enough: convergence

YW