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Lecture 3.3 - Supervised Learning

Stochastic Gradient Descent
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‣ for N >> 1                                         is very costly to compute! 

‣ Needs to process all data                       at once. 

‣ Matrix inversion of M x M matrix: 

‣ Loss is a sum of error terms for each datapoint: 

‣ Approach for large dataset: stochastic gradient descent
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Stochastic gradient descent
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‣ The gradient encodes all directional derivatives via scalar product 

‣ The gradient is always perpendicular to the contours of a function 

‣ The gradient always points in the direction of steepest ascent
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Recap: The Gradient
Change in error along
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‣ Stochastic gradient descent: 

‣ Initialize            , choose learning rate      .  

‣ Iterate over data points, and update   

‣ If ED(w) is convex in w and " is small enough: convergence
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Stochastic gradient descent
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