
Machine Learning 1
Lecture 3.2 - Supervised Learning

Linear Regression via Maximum Likelihood
Optimization

Erik Bekkers

(Bishop 3.1.1)

Image credit: Kirillm | Getty Images

Slide credits: Patrick Forré and
Rianne van den Berg

Machine Learning 1

‣ Regression:

‣ Input variables

‣ Target variables

‣ Linear model with basis functions

2

Linear Regression

y(x,w) =

D = {(x1, t1), ..., (xN , tN)} t

xx0

2�y(x0,w)

y(x,w)

p(t|x0,w, �)

Figure: Gaussian conditional distribution
(Bishop 1.16)

Ii GIRD

ti EIR

'
'

¢c±,

" Jean

**¥÷÷!
""

Machine Learning 1

‣ Assume gaussian noise around the target

‣

‣ Dataset: and

‣ Likelihood function

3

Maximum Likelihood

t =

p(t|x,w,�) =

X = {x1, ...,xN} t = (t1, ..., tN)T

p(t|X,w,�) =

y(x, w) = wTϕ(x)

Y CE ,
we) t E

,

E - Nco . P
"

)

NCE luffas' , f
'

)
-

yCE ,
K)

data material p×N vector of sine N

III. If e-
{ (Gi - atoll 32

Machine Learning 1

‣ Likelihood:

‣ Log likelihood

‣ Sum-of-squares error:

‣ For comparison of different dataset sizes N

4

ML: Sum-of-Squares Error

log p(t|X,w,�) =

ED(w) =

ERMSE
D (w) =

p(t|X,w,�) =
NY

i=1

N (ti|wT�(xi),�
�1)

I log B - E log ut - E ¥
,

(ti -WIE CE D
'

{ §
.

Cti -widex. o D
'

±N€,Cti-wtd¥

Machine Learning 1 5

Example: Sum-of-Squares Error
6 1. INTRODUCTION

Figure 1.3 The error function (1.2) corre-
sponds to (one half of) the sum of
the squares of the displacements
(shown by the vertical green bars)
of each data point from the function
y(x,w).

t

x

y(xn,w)

tn

xn

function y(x,w) were to pass exactly through each training data point. The geomet-
rical interpretation of the sum-of-squares error function is illustrated in Figure 1.3.

We can solve the curve fitting problem by choosing the value of w for which
E(w) is as small as possible. Because the error function is a quadratic function of
the coefficients w, its derivatives with respect to the coefficients will be linear in the
elements of w, and so the minimization of the error function has a unique solution,
denoted by w!, which can be found in closed form. The resulting polynomial isExercise 1.1
given by the function y(x,w!).

There remains the problem of choosing the order M of the polynomial, and as
we shall see this will turn out to be an example of an important concept called model
comparison or model selection. In Figure 1.4, we show four examples of the results
of fitting polynomials having orders M = 0, 1, 3, and 9 to the data set shown in
Figure 1.2.

We notice that the constant (M = 0) and first order (M = 1) polynomials
give rather poor fits to the data and consequently rather poor representations of the
function sin(2πx). The third order (M = 3) polynomial seems to give the best fit
to the function sin(2πx) of the examples shown in Figure 1.4. When we go to a
much higher order polynomial (M = 9), we obtain an excellent fit to the training
data. In fact, the polynomial passes exactly through each data point and E(w!) = 0.
However, the fitted curve oscillates wildly and gives a very poor representation of
the function sin(2πx). This latter behaviour is known as over-fitting.

As we have noted earlier, the goal is to achieve good generalization by making
accurate predictions for new data. We can obtain some quantitative insight into the
dependence of the generalization performance on M by considering a separate test
set comprising 100 data points generated using exactly the same procedure used
to generate the training set points but with new choices for the random noise values
included in the target values. For each choice of M , we can then evaluate the residual
value of E(w!) given by (1.2) for the training data, and we can also evaluate E(w!)
for the test data set. It is sometimes more convenient to use the root-mean-square

Figure: Errors are given by half the squares of green bars (Bishop 1.3)

I
,

'

Machine Learning 1

‣ Maximize the log likelihood / Minimize the sum-of-squares
error:

6

Maximum Likelihood Estimates

@

@w
log p(t|X,w,�) = ��

@

@w
ED(x) = ��

@

@w

1

2

NX

i=1

{ti �wT�(xi)}2

@a

@x
=

✓
@a

@x1
,
@a

@x2
, ...

◆

us

←K

-

u
-

- Eti - EE

.at/::.::::::::::.......=o:÷÷÷÷÷÷÷÷÷⇐¥ E- E. quince.in?ti&ceii
⇒ (transpose)

Taa : ' (Index. fix.it/w=E..tidces

Machine Learning 1

‣ Optimal w* satisfies

7

Maximum Likelihood Estimates

NX

i=1

�(xi)�(xi)
Tw =

NX

i=1

�(xi)ti

E[t0|x0,wML] =

� =

0

B@
�0(x1) �1(x1) . . . �M�1(x1)

...
...

. . .
...

�0(xN) �1(xN) . . . �M�1(xN)

1

CA

design matrix

d

Mxn matrix ve.IE old
- t

the
NXM matrix

&
G
atque -- EE

re
-

- CEE)
- '

E'
-

E

-

Pseudo inverse

Et Moore
- Penrose

inverse
af I

@ItoI-IJwTmd.ca'

)

