

UNIVERSITY OF AMSTERDAM Informatics Institute

Machine Learning 1

Lecture 3.1 - Supervised Learning Linear Regression With Basis Functions

Erik Bekkers

(Bishop 3.1)

Slide credits: Patrick Forré and Rianne van den Berg

Image credit: Kirillm | Getty Images

Three Statistical Learning Principles

Three general statistical learning principles to go from data to models (parametric predictive/proposal distributions):

- Maximum likelihood
- II. Maximum a posteriori
- III. Bayesian prediction

 $p(t|x) = \mathcal{N}(t | y(x, w), \beta)$)

Linear Regression

- Regression: $D = \{(\mathbf{x}_1, t_1), ..., (\mathbf{x}_N, t_N)\}\$
	- Input variables 2666 R
	-

Simplest linear model:

$$
y(\mathbf{x}, \mathbf{w}) = W_{o} + W_{1} \times, +W_{2} \times_{2} + ... + W_{D} \times_{D}
$$
\n
$$
= W_{o} + W_{1} \times \mathbf{w} + W_{2} \times_{2} + ... + W_{D} \times_{D}
$$
\n
$$
= W_{o} + W_{1} \times \mathbf{w} + W_{2} \times \mathbf{w} + W_{3} \times_{E} \mathbf{w} + W_{4} \times_{E} \mathbf{w} + W_{5} \times_{E} \mathbf{w} + W_{6} \times_{E} \mathbf{w} + W_{7} \times_{E} \mathbf{w} + W_{8} \times_{E} \mathbf{w} + W_{9} \times_{E} \mathbf{w} + W_{1} \times_{E} \mathbf{w} + W_{2} \times_{E} \mathbf{w} + W_{3} \times_{E} \mathbf{w} + W_{4} \times_{E} \mathbf{w} + W_{5} \times_{E} \mathbf{w} + W_{6} \times_{E} \mathbf{w} + W_{7} \times_{E} \mathbf{w} + W_{8} \times_{E} \mathbf{w} + W_{9} \times_{E} \mathbf{w} + W_{1} \times_{E} \mathbf{w} + W_{2} \times_{E} \mathbf{w} + W_{4} \times_{E} \mathbf{w} + W_{5} \times_{E} \mathbf{w} + W_{6} \times_{E} \mathbf{w} + W_{7} \times_{E} \mathbf{w} + W_{8} \times_{E} \mathbf{w} + W_{9} \times_{E} \mathbf{w} + W_{1} \times_{E} \mathbf{w} + W_{1} \times_{E} \mathbf{w} + W_{2} \times_{E} \mathbf{w} + W_{4} \times_{E} \mathbf{w} + W_{5} \times_{E} \mathbf{w} + W_{6} \times_{E} \mathbf{w} + W_{7} \times_{E} \mathbf{w} + W_{8} \times_{E} \mathbf{w} + W_{9} \times_{E} \mathbf{w} + W_{9} \times_{E} \mathbf{w} + W_{1} \times_{E} \mathbf{w} + W_{1} \times_{E} \mathbf{w} + W_{1} \times_{E} \mathbf{w} + W_{2} \times_{E} \mathbf{w} + W_{3} \times_{E} \mathbf{w
$$

Linear Basis Models

- $M \in IR^{M}$ \triangleright Fix number of parameters M s.t.
- Choose *M* 1 basis functions/features of **x**: $\phi_i(\chi) \in \mathbb{R}$
 $\phi_i : \mathbb{R}^{\circ} \longrightarrow \mathbb{R}$ $\phi_i : \mathbb{R}^{\circ} \longrightarrow \mathbb{R}$ \blacktriangleright
- Approximation:

$$
y(\mathbf{x}, \mathbf{w}) = W_{o} + \sum_{\delta=1}^{M-1} W_{\delta} \phi_{\delta}(\chi)
$$

\n
$$
w_{0}: b_{\delta} \wedge \phi_{0}(\chi) = 1 \text{ such that } \phi(\chi) = \left[\phi_{o}(\chi)\right] \phi_{\delta}(\chi), ..., \phi_{m-1}(\chi) = \frac{1}{2} \phi_{\delta}(\chi)
$$

\n
$$
y(\mathbf{x}, \mathbf{w}) = W^{T} \phi(\chi) \qquad \qquad \int \phi_{\delta}(\chi) \phi_{\delta}(\chi), ..., \phi_{m-1}(\chi) = \frac{1}{2} \phi_{\delta}(\chi)
$$

Example: Basis Functions (I) (M=0)

Projection on input components : $\phi_i(\mathbf{x}) = x_i$

for
$$
\mathbf{x} = (x_1, x_2, ..., x_D)^T
$$
: $y(\mathbf{x}, \mathbf{w}) = W_o + \sum_{i=1}^{M} W_i \phi_i(\mathbf{x})$
= $W_o + \sum_{i=1}^{M} W_i X_i$

• *i*-power map for $x \in \mathbb{R}$: $\phi_i(x) = x^i$

$$
y(x, w) = w_0 + w_1 \times +w_2 \cdot x^2 + w_3 \times^3 \dots
$$

$$
\frac{1}{\sqrt{\frac{1}{x^{2}}}}\frac{\phi(\chi)}{\phi(\chi)}=\begin{pmatrix} \frac{1}{x^{2}}\\ \frac{1}{x^{3}}\\ \frac{1}{x^{2}}\\ \frac{1}{x^{3}}\\ \frac{1}{x^{4}}\\ \frac{1}{x^{4}}\\ \frac{1}{x^{5}}\\ \frac{1}{x^{6}}\\ \frac{1}{
$$

 Γ

Example: Basis Functions (III) $\frac{h_{y}e^{i\varphi a\pi m k k \sigma}}{h_{y}}$
• Gaussian basis functions: $\phi_{i}(x) = \exp\left(-\frac{1}{2}(x-\mu_{i})^{T}\sum_{i=1}^{T}(x-\mu_{i})\right)$

$$
x \in \mathbb{R}^{D}
$$
\n
$$
y(\mathbf{x}, \mathbf{w}) = W_{o} + \sum_{k=1}^{M-1} W_{k} \cdot \mathcal{L}
$$
\nLogistic sigmoid functions:

\n
$$
\phi_{i}(x) = \sigma \left(\frac{x - \mu_{i}}{s_{i}} \right) \qquad \text{by } \rho e \text{ for }
$$

Figure: Example of basis functions (Bishop 3.1)