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Three general statistical learning principles to go from data to 
models (parametric predictive/proposal distributions): 

I. Maximum likelihood 

II. Maximum a posteriori 

III. Bayesian prediction
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Three Statistical Learning Principles
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‣ Regression:  

‣ Input variables  

‣ Target variables 

‣ Simplest linear model: 
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Linear Regression

y(x,w) =

D = {(x1, t1), ..., (xN , tN )}
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Linear Regression
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‣ Fix number of parameters M s.t.  

‣ Choose M - 1 basis functions/features of x: 

‣ Approximation: 

‣         : 

‣ Set                     such that 
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Linear Basis Models
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‣ Projection on input components :   

for                                     : 

‣ i-power map for            :
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Example: Basis Functions (I)

�i(x) = xi

x = (x1, x2, ..., xD)T y(x,w) =
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‣ Gaussian basis functions: 

‣ Logistic sigmoid functions:                                      

      with
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Example: Basis Functions (III)
�i(x) = exp
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Example: Basis Functions (IV)
140 3. LINEAR MODELS FOR REGRESSION
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Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.

on a regular lattice, such as the successive time points in a temporal sequence, or the
pixels in an image. Useful texts on wavelets include Ogden (1997), Mallat (1999),
and Vidakovic (1999).

Most of the discussion in this chapter, however, is independent of the particular
choice of basis function set, and so for most of our discussion we shall not specify
the particular form of the basis functions, except for the purposes of numerical il-
lustration. Indeed, much of our discussion will be equally applicable to the situation
in which the vector φ(x) of basis functions is simply the identity φ(x) = x. Fur-
thermore, in order to keep the notation simple, we shall focus on the case of a single
target variable t. However, in Section 3.1.5, we consider briefly the modifications
needed to deal with multiple target variables.

3.1.1 Maximum likelihood and least squares
In Chapter 1, we fitted polynomial functions to data sets by minimizing a sum-

of-squares error function. We also showed that this error function could be motivated
as the maximum likelihood solution under an assumed Gaussian noise model. Let
us return to this discussion and consider the least squares approach, and its relation
to maximum likelihood, in more detail.

As before, we assume that the target variable t is given by a deterministic func-
tion y(x,w) with additive Gaussian noise so that

t = y(x,w) + ε (3.7)

where ε is a zero mean Gaussian random variable with precision (inverse variance)
β. Thus we can write

p(t|x,w, β) = N (t|y(x,w), β−1). (3.8)

Recall that, if we assume a squared loss function, then the optimal prediction, for a
new value of x, will be given by the conditional mean of the target variable. In theSection 1.5.5
case of a Gaussian conditional distribution of the form (3.8), the conditional mean

Figure: Example of basis functions (Bishop 3.1)
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