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‣ Real valued stochastic variable X 

‣ Mean: 
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Gaussian DistributionPlot of the univariate Gaussian
and the N (x|µ, σ2)
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‣ Real valued stochastic variable X 

‣  Variance: 
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Gaussian DistributionPlot of the univariate Gaussian
and the N (x|µ, σ2)
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Gaussian Distribution

%[x] = μ

Var[x] = σ2

1.2. Probability Theory 25

Figure 1.13 Plot of the univariate Gaussian
showing the mean µ and the
standard deviation σ.

N (x|µ, σ2)
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N

(
x|µ, σ2

)
dx = 1. (1.48)

Thus (1.46) satisfies the two requirements for a valid probability density.
We can readily find expectations of functions of x under the Gaussian distribu-

tion. In particular, the average value of x is given byExercise 1.8

E[x] =
∫ ∞

−∞
N

(
x|µ, σ2

)
xdx = µ. (1.49)

Because the parameter µ represents the average value of x under the distribution, it
is referred to as the mean. Similarly, for the second order moment

E[x2] =
∫ ∞

−∞
N

(
x|µ, σ2

)
x2 dx = µ2 + σ2. (1.50)

From (1.49) and (1.50), it follows that the variance of x is given by

var[x] = E[x2] − E[x]2 = σ2 (1.51)

and hence σ2 is referred to as the variance parameter. The maximum of a distribution
is known as its mode. For a Gaussian, the mode coincides with the mean.Exercise 1.9

We are also interested in the Gaussian distribution defined over a D-dimensional
vector x of continuous variables, which is given by

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}
(1.52)

where the D-dimensional vector µ is called the mean, the D ×D matrix Σ is called
the covariance, and |Σ| denotes the determinant of Σ. We shall make use of the
multivariate Gaussian distribution briefly in this chapter, although its properties will
be studied in detail in Section 2.3.

&(x |μ, σ2) = 1
2πσ2

e− 1
2σ2 (x−μ)2

x ∼ &(x |μ, σ2) :
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‣ D-dimensional vector  

‣    

‣                                                                         

‣  
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Multivariate Gaussian Distribution
x = (x1, x2, ..., xD)T

⌃ =
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Normalization factor:
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