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Regression with GP’s

»  Combining models: (Bishop 4.1-4.4)

»  Bayesian model averaging vs. model combination methods

»  Committees:
» Bootstrap aggregation
»  Random subspace methods

» Boosting
Decision trees

»  Random forests
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Introduction to Statistical learning (ch 8)

Gareth James, Daniela Witten,

Trevor Hastie, Robert Tibshirani, Gareth James

DENEERED

| | | Trevor Hastie
Introduction to Machine learming as Robert Tibshirani
a statistical toal. ,
I An Introduction

See: to Statistical
http://www-bct.usc.edu/~gareth/ Learning

ISL/

for pdf of book and MOOC by
Hastie and Tibshiran
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The elements of statistical learning (ch 9.2)

Trevor Hastie, Robert Tibshirani, ;“’VO’ Hastie
| obert Tibshirani
Jerome Friedman Jerome Friedman

The Elements of
Statistical Learning

More advanced view of Machine
learning as a statistical tool.

Second Edition
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Decision Trees

Slides based on Stanford MOOC Statistical Learning (Ch 8)

»  Applications: Regression & Classification
» - Stratify/Segment input space into rectangular regions

»  Splitting rules of input space can be summarized in tree

> Pros and cons
»  Simple and useful for interpretation
»  Not competitive with state of the art algorithms

» Extensions such as bagging, random forests and boosting are
ensemble methods that improve performance
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Decision ITrees: Regression

seball salary data:
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Salary is color-coded from low (blue, green) to high (yellow, red)
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Baseball salary dataset
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Basketball salary dataset [source: ISL Chapter 8] Example decision tree [source: ISL Chapter 8]
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Baseball salary dataset
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Ry = {X]years < 4.5}
Ry = {X]years > 4.5, hits < 117.5}
R3 = {X]years > 4.5, hits > 117.5}

Basketball salary dataset [source: ISL Chapter 8] Example decision tree [source: ISL Chapter 8]
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Interpretation

» Years is the most important factor in
determining Salary. Players with less
experience earn lower salaries than
more experienced players.

» For less experienced players, the
#hits in previous year is of little
importance.

»  More experience players get
rewarded for a larger #hits.
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Hits

Tree building process

J
»  Recursive binary splitting: minimize Z Z (yi — ij)z

J=1 i:X,€R;

with ¥, mean response for training observations in jth box
J
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1.

Select the predictor/feature X; and the cutpoint s,

such that splitting {x|x; < s} and {x|x; > s}
leads to largest decrease in SOSE. (greedy)

For each of the two regions: Select the best

predictor/feature X; and the cutpoint s that lead to

largest decrease in SOSE. Split the region that has
largest decrease in SOSE.

Example stopping criterion: Every region should
contain at most 5 observations
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Predictions

if X' € Rj predict ¢’

For new datapoint:
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Decision trees: overfitting

» Large trees might overfit to the training set.

» A small variation in the training dataset can cause different splitting higher
up the tree.

»  Smaller trees can underfit.

» - Strategy: stop splitting when the decrease in SOSE no longer exceeds a
threshold

»  Short-sided (greedy). A split with a small decrease can lead to larger
decreases later on.
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Pruning decision trees
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Strategy 1: Grow the tree only until a maximum depth er

To

Strategy 2: Grow a large tree T, and prune it to a subtree T with a
smaller number of terminal nodes | T .

Residual error at jth leaf node: Qj= Z (y,-—ij)z

I:X,ER;

Increase a slowly starting from zero and for each Rs

value find 7T that minimizes: Ry
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Select the optimal value of @ with a validation set.

Cost complexity pruning/weakest link pruning X,
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Classification decision trees  '“!
> Recursive binary splitting for classification with K Classes\ !
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»  The sum-of-squares error is replaced by one of the following options:
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»  Negative cross entropy: Qj = — ijk lnpjk
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 Giniindex: @ = ) p(1 — pjp) s
k=1 0.2 1

»  NCE & Gini encourage regions with high
proportions of data points for one of the classes  °%s o2 o2 os os 10
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Ensemble methods

» Decision trees are easily interpretable and nice to visualize.
»  Performance is usually suboptimal.
»  Solution: Create ensembles of trees!

»  Bagging / bootstrap aggregation with trees

» Random Forests: bagging + random subspace method

» Boosting

Machine Learning 1
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Regression with GP’s

»  Combining models: (Bishop 4.1-4.4)

»  Bayesian model averaging vs. model combination methods

»  Committees:
» Bootstrap aggregation
»  Random subspace methods

» Boosting
»  Decision trees

Random forests

Machine Learning 1
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Random Forests
( Boots¥ r&p(-?)"})
»  Bagged trees can be highly correlated: if there are a few very strong

predictors in the dataset, then all bagged trees will use these predictors
In top splits

- Solution
»  Build an ensemble of trees by bootstrapping the dataset

» Feature bagging: for each tree, every time a split is considered, a

random selection of m (out of p) predictors is chosen as a split
candidate.

» At each split a new selection is made, where typically M =4/ D
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Bagging vs Random Forests
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»  Gene expression dataset / m=p
0 ( —— m=p/2
»  Task: classify cancer type g _ single tree: 45.7 % — P
based on p = 500 gene i ,
expressions 2 ° 1
» Random forests (m < p) 2 °
show small improvement =
over just bootstrapping S
(m = p)
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Bagging versus random forests for the gene expression dataset [source: ISL Chapter 8]
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