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‣ Combining models: (Bishop 4.1-4.4) 

‣ Bayesian model averaging vs. model combination methods 

‣ Committees:  

‣ Bootstrap aggregation  

‣ Random subspace methods 

‣ Boosting 

‣ Decision trees  

‣ Random forests
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Regression with GP’s
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‣ Committee consists of multiple base classifiers 

‣ The performance of the committee can be significantly better than that of 
any of the base classifiers 

‣ AdaBoost: adaptive boosting  

‣ Boosting can give good results even if the base classifiers have a 
performance that is only slightly better than random 

‣ Base classifiers are simple models/weak learners 

‣ Can also be extended to regression.

3

Boosting

bootstrapping (bagging : decreasing
variance

boosting
: decreasing

bias

and

( variance I



Machine Learning 1

‣ Base classifiers are trained in sequence 

‣ Note this contrast with other committee methods such as bagging 

‣ Each base classifier is trained using a weighted form of the dataset 

‣ The weighting coefficient associated with each datapoint depends on the 
performance of previous classifiers. 

‣ Points that are misclassified by one of the base classifiers are given 
greater weight when used to train the next base classifier in the 
sequence. 

‣ When all classifiers are trained, predictions are combined through a 
weighted majority voting scheme. 

                      YM(x) = sign (
M

∑
m=1

αmym(x))
4

Boosting

less : ( In
,
tu
,
Wn )

(
ES - 1,13

[ weight on model

high a ← good perform
in

model



Machine Learning 1

‣ Dataset  with   

‣ Each data point has an associated weighting parameter  

‣ The weights are initialized to  

‣ We assume we have a procedure to train a base classifier  such that it 

produces a function  

‣ Adaboost:  

‣ At each stage a new classifier is trained on weighted dataset 

‣ Weights for data points that were misclassified by previous classifier 
are increased 

‣ When all classifiers are trained, committee is formed by weighted base 
classifiers

{(xn, tn)}N
n=1 tn ∈ {−1, + 1}

wn

wn = 1/N
m

ym(x) ∈ {−1, + 1}
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Boosting: binary classification
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1. Initialize weights:  for  

2. for : 

(a) Fit classifier  to minimize  

(b) compute weighted error rates      

                                                                           and  

(c) Update weights  

3. Make predictions 

w(1)
n = 1/N n = 1,…, N

m = 1,…, M

ym(x) Jm =
N

∑
n=1

w(m)
n I[ym(xn) ≠ tn]

ϵm =
∑N

n=1 w(m)
n I[ym(xn) ≠ tn]
∑N

n=1 w(m)
n

αm = ln ( 1 − ϵm

ϵm )
w(m+1)

n = w(m)
n exp{αmI[ym(xn) ≠ tn]}

YM(x) = sign (
M

∑
m=1

αmym(x))
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‣ Prediction  

‣ prediction weights  

‣ weighted error rates  

‣ Greater weights for more accurate  
classifiers!

YM(x) = sign (
M

∑
m=1

αmym(x))
αm = ln ( 1 − ϵm

ϵm )
ϵm =

∑N
n=1 w(m)

n I[ym(xn) ≠ tn]
∑N

n=1 w(m)
n
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Boosting example: decision stumps
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‣ Sequential minimization of exponential error function 

‣ Error function  

‣ Linear combination of base classifiers  

                        

‣ Goal: minimize  with respect to  and parameters of base classifiers  

‣ Sequential minimization:  

‣ Fix parameters of  and  

‣ Minimize  w.r.t. parameters of  and 

Em =
N

∑
n=1

exp{−tn fm(xn)}

yl(x)

fm(x) = 1
2

m

∑
l=1

αlyl(x)

E {αl} yl(x)

y1(x), . . . , ym−1(x) α1, . . . , αm−1

E ym(x) αm
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Interpretation of Adaboost
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‣ Error function  

             

                         

‣ Let  be the set of correctly classified data points       ( ) 

‣ Let  be the set of correctly classified data points      ( ) 

‣ Error function: 

             

                 

Em =
N

∑
n=1

exp{−tn fm(xn)} =
N

∑
n=1

exp{−tn fm−1(xn) − 1
2 tnαmym(xn)}

=
N

∑
n=1

w(m)
n exp{− 1

2 tnαmym(xn)}, w(m)
n =

Tm ym(x) tnym(xn) = 1
Mm ym(x) tnym(xn) = − 1

Em = e−αm/2 ∑
n∈Tm

w(m)
n + e+αm/2 ∑

n∈Mm

w(m)
n

= (eαm/2 − e−αm/2)
N

∑
n=1

w(m)
n I[ym(xn) ≠ tn] + e−αm/2

N

∑
n=1

w(m)
n
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‣ Error function 

              

‣ Minimization w.r.t.  minimizes 

              

‣ Minimization w.r.t. :     

                           

Em = (eαm/2 − e−αm/2)
N

∑
n=1

w(m)
n I[ym(xn) ≠ tn] + e−αm/2

N

∑
n=1

w(m)
n

ym(x)

Jm =
N

∑
n=1

w(m)
n I[ym(xn) ≠ tn]

αm
∂Em

∂αm
= 0

αm = ln ( 1 − ϵm

ϵm ) ϵm =
∑N

n=1 w(m)
n I[ym(xn) ≠ tn]
∑N

n=1 w(m)
n
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Derivation of Adaboost
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‣ After we found  and , we minimize  w.r.t.  and  

          

                   

                  

                   

‣ Weights are updated:   

ym(x) αm Em+1 ym+1(x) αm+1

Em+1 =
N

∑
n=1

exp{−tn fm+1(xn)}

=
N

∑
n=1

exp{−tn fm−1(xn) − 1
2 tnαmym(xn) − 1

2 tnαm+1ym+1(xn)}

=
N

∑
n=1

w(m)
n exp{− 1

2 tnαmym(xn)}exp{− 1
2 tnαm+1ym+1(xn)}

=
N

∑
n=1

w(m+1)
n exp{− 1

2 tnαm+1ym+1(xn)}

w(m+1)
n = w(m)

n exp{− 1
2 tnαmym(xn)}
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Derivation of Adaboost
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‣ Weight updates  

‣ Use  

‣ Then  

‣ Term  is independent of  and can be discarded  

‣ Prediction: 

           

w(m+1)
n = w(m)

n exp{− 1
2 tnαmym(xn)}

tnym(xn) = 1 − 2I[ym(xn) ≠ tn]
w(m+1)

n = w(m)
n exp{−αm /2}exp{αmI[ym(xn) ≠ tn]}

exp{−αm /2} n

sign (fm(x)) = sign ( 1
2

m

∑
l=1

αlyl(x)) = sign (
m

∑
l=1

αlyl(x))
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Derivation of Adaboost
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‣ Exponential error function makes Adaboost very simple algorithm 

‣ Very sensitive to outliers for which  is large negative 

‣ Exponential error function cannot be interpreted as log-likelihood of well-
defined probabilistic model 

‣ Doesn’t generalize straightforwardly to 

tnym(x)

K > 2
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Advantages and disadvantages


