

UNIVERSITY OF AMSTERDAM Informatics Institute

Machine Learning 1

Lecture 13.3 - Combining Models Boosting

Erik Bekkers

(Bishop 14.3)

Slide credits: Patrick Forré and Rianne van den Berg

Image credit: Kirillm | Getty Images

Regression with GP's

- Combining models: (Bishop 4.1-4.4)
 - Bayesian model averaging vs. model combination methods

Committees:

- Bootstrap aggregation
- Random subspace methods
- Boosting
- Decision trees
- Random forests

Boosting

- Committee consists of multiple base classifiers
- The performance of the committee can be significantly better than that of any of the base classifiers
- AdaBoost: adaptive boosting
- Boosting can give good results even if the base classifiers have a performance that is only slightly better than random
- Base classifiers are simple models/weak learners
- Can also be extended to regression.

bouted apping / bagging i decreasing variance boosting i decreasing bias (variance)

Boosting

- Base classifiers are trained in sequence
- Note this contrast with other committee methods such as bagging
- Each base classifier is trained using a weighted form of the dataset
- The weighting coefficient associated with each datapoint depends on the performance of previous classifiers. $\int_{\omega s} s \cdot (x_{\alpha}, b_{\alpha}, \omega_{\alpha})$
- Points that are misclassified by one of the base classifiers are given greater weight when used to train the next base classifier in the sequence.
- When all classifiers are trained, predictions are combined through a weighted majority voting scheme. $-\frac{\epsilon}{2} \frac{1}{2} \frac{1}{3}$

$$Y_{M}(\mathbf{x}) = \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_{m} y_{m}(\mathbf{x})\right)$$

weight on model
high & good performine
model

Boosting: binary classification

- Dataset $\{(\mathbf{x}_n, t_n)\}_{n=1}^N$ with $t_n \in \{-1, +1\}$
- Each data point has an associated weighting parameter w_n
- The weights are initialized to $w_n = 1/N$
- We assume we have a procedure to train a base classifier m such that it produces a function $y_m(\mathbf{x}) \in \{-1, +1\}$
- Adaboost:
 - At each stage a new classifier is trained on weighted dataset
 - Weights for data points that were misclassified by previous classifier are increased
 - When all classifiers are trained, committee is formed by weighted base classifiers

Adaboost

- 1. Initialize weights: $w_n^{(1)} = 1/N$ for n = 1, ..., N
- 2. for m = 1, ..., M:

Subset
nitialize weights:
$$w_n^{(1)} = 1/N$$
 for $n = 1, ..., N$
or $m = 1, ..., M$:
(a) Fit classifier $y_m(\mathbf{x})$ to minimize $J_m = \sum_{n=1}^N w_n^{(m)} I[y_m(\mathbf{x}_n) \neq t_n]$
 $\sum_{n=1}^N w_n^{(m)} I[y_m(\mathbf{x}_n) \neq t_n]$

λŢ

(b) compute weighted error rates $\epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I[y_m(\mathbf{x}_n) \neq t_n]}{\sum_{n=1}^{N} w_n^{(m)}}$

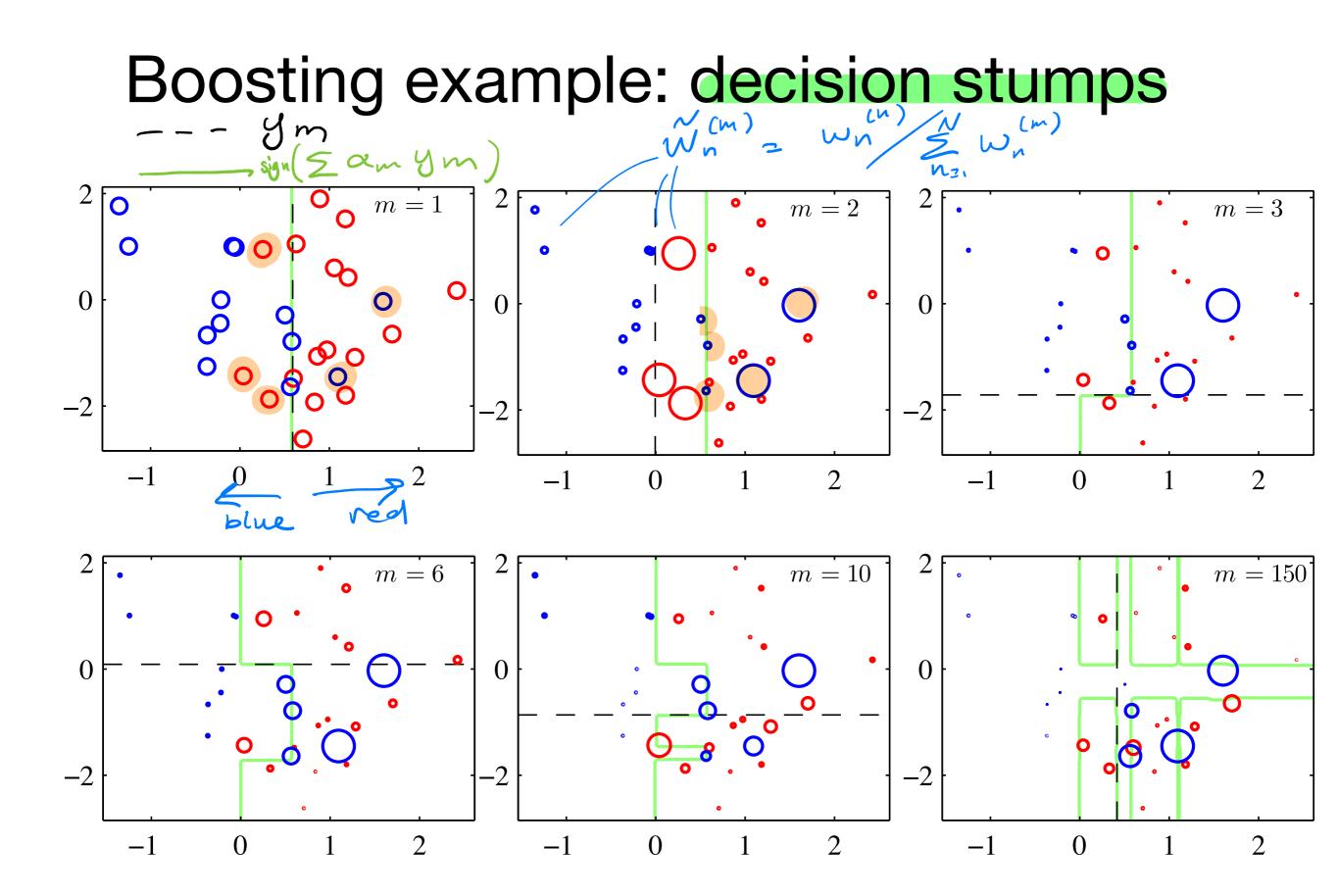
model and
$$\alpha_m = \ln\left(\frac{1-\epsilon_m}{\epsilon_m}\right)$$

(c) Update weights
$$w_n^{(m+1)} = w_n^{(m)} \exp\{\alpha_m I[y_m(\mathbf{x}_n) \neq t_n]\}$$

3. Make predictions
$$Y_M(\mathbf{x}) = \operatorname{sign}\left(\sum_{m=1}^M \alpha_m y_m(\mathbf{x})\right)$$

Adaboost

Prediction
$$Y_M(\mathbf{x}) = \operatorname{sign}\left(\sum_{m=1}^M \alpha_m y_m(\mathbf{x})\right)$$
prediction weights $\alpha_m = \ln\left(\frac{1-\epsilon_m}{\epsilon_m}\right)$
weighted error rates $\epsilon_m = \frac{\sum_{n=1}^N w_n^{(m)} I[y_m(\mathbf{x}_n) \neq t_n]}{\sum_{n=1}^N w_n^{(m)}}$
Greater weights for more accurate classifiers!
Greater weights for more accurate classifiers!



Interpretation of Adaboost

- Sequential minimization of exponential error function
 7
 7
- Error function $E_m = \sum_{n=1}^{\infty} \exp\{-t_n f_m(\mathbf{x}_n)\}$
- Linear combination of base classifiers $y_l(\mathbf{x})$ $f_m(\mathbf{x}) = \frac{1}{2} \sum_{l=1}^m \alpha_l y_l(\mathbf{x})$
- Goal: minimize *E* with respect to $\{\alpha_l\}$ and parameters of base classifiers $y_l(\mathbf{x})$
- Sequential minimization:
 - Fix parameters of $y_1(\mathbf{x}), \ldots, y_{m-1}(\mathbf{x})$ and $\alpha_1, \ldots, \alpha_{m-1}$
 - Minimize E w.r.t. parameters of $y_m(\mathbf{x})$ and α_m

Derivation of Adaboost $\int m = \frac{1}{2} \sum_{k=1}^{\infty} \lambda_k y_k(x_k)$

Error function

$$E_{m} = \sum_{n=1}^{N} \exp\{-t_{n}f_{m}(\mathbf{x}_{n})\} = \sum_{n=1}^{N} \exp\{-t_{n}f_{m-1}(\mathbf{x}_{n}) - \frac{1}{2}t_{n}\alpha_{m}y_{m}(\mathbf{x}_{n})\}$$
$$= \sum_{n=1}^{N} w_{n}^{(m)} \exp\{-\frac{1}{2}t_{n}\alpha_{m}y_{m}(\mathbf{x}_{n})\}, \qquad w_{n}^{(m)} = \exp\{-t_{n}\int_{M-1}^{M} (\mathbf{x}_{n})\},$$

- Let T_m be the set of correctly classified data points $y_m(\mathbf{x})$ $(t_n y_m(\mathbf{x}_n) = 1)$
- Let M_m be the set of correctly classified data points $y_m(\mathbf{x})$ $(t_n y_m(\mathbf{x}_n) = -1)$
- Error function:

$$E_m = e^{-\alpha_m/2} \sum_{n \in T_m} w_n^{(m)} + e^{+\alpha_m/2} \sum_{n \in M_m} w_n^{(m)}$$
$$= \left(e^{\alpha_m/2} - e^{-\alpha_m/2}\right) \sum_{n=1}^N w_n^{(m)} I[y_m(\mathbf{x}_n) \neq t_n] + e^{-\alpha_m/2} \sum_{n=1}^N w_n^{(m)}$$

Derivation of Adaboost

Error function

$$E_m = \left(e^{\alpha_m/2} - e^{-\alpha_m/2}\right) \sum_{n=1}^N w_n^{(m)} I[y_m(\mathbf{x}_n) \neq t_n] + e^{-\alpha_m/2} \sum_{n=1}^N w_n^{(m)}$$

• Minimization w.r.t. $y_m(\mathbf{x})$ minimizes

$$J_m = \sum_{n=1}^N w_n^{(m)} I[y_m(\mathbf{x}_n) \neq t_n]$$

, Minimization w.r.t.
$$\alpha_m$$
: $\frac{\partial E_m}{\partial \alpha_m} = 0$

(b)
$$\alpha_m = \ln\left(\frac{1-\epsilon_m}{\epsilon_m}\right)$$
 $\epsilon_m = \frac{\sum_{n=1}^{N} \epsilon_n}{\epsilon_m}$

$$= \frac{\sum_{n=1}^{N} w_n^{(m)} I[y_m(\mathbf{x}_n) \neq t_n]}{\sum_{n=1}^{N} w_n^{(m)}}$$

Derivation of Adaboost

• After we found $y_m(\mathbf{x})$ and α_m , we minimize E_{m+1} w.r.t. $y_{m+1}(\mathbf{x})$ and α_{m+1}

$$E_{m+1} = \sum_{n=1}^{N} \exp\{-t_n f_{m+1}(\mathbf{x}_n)\}$$

= $\sum_{n=1}^{N} \exp\{-t_n f_{m-1}(\mathbf{x}_n) - \frac{1}{2} t_n \alpha_m y_m(\mathbf{x}_n) - \frac{1}{2} t_n \alpha_{m+1} y_{m+1}(\mathbf{x}_n)\}$
= $\sum_{n=1}^{N} w_n^{(m)} \exp\{-\frac{1}{2} t_n \alpha_m y_m(\mathbf{x}_n)\} \exp\{-\frac{1}{2} t_n \alpha_{m+1} y_{m+1}(\mathbf{x}_n)\}$
= $\sum_{n=1}^{N} w_n^{(m+1)} \exp\{-\frac{1}{2} t_n \alpha_{m+1} y_{m+1}(\mathbf{x}_n)\}$
Weights are updated: $w_n^{(m+1)} = w_n^{(m)} \exp\{-\frac{1}{2} t_n \alpha_m y_m(\mathbf{x}_n)\}$

(c) ·

Derivation of Adaboost

- Weight updates $w_n^{(m+1)} = w_n^{(m)} \exp\{-\frac{1}{2}t_n \alpha_m y_m(\mathbf{x}_n)\}$
- Use $t_n y_m(\mathbf{x}_n) = 1 2I[y_m(\mathbf{x}_n) \neq t_n]$
- Then $w_n^{(m+1)} = w_n^{(m)} \exp\{-\alpha_m/2\} \exp\{\alpha_m I[y_m(\mathbf{x}_n) \neq t_n]\}$ (C) does not depend on n
- Term $\exp\{-\alpha_m/2\}$ is independent of *n* and can be discarded
- Prediction:

$$\operatorname{sign}\left(f_{m}(\mathbf{x})\right) = \operatorname{sign}\left(\frac{1}{2}\sum_{l=1}^{m}\alpha_{l}y_{l}(\mathbf{x})\right) = \operatorname{sign}\left(\sum_{l=1}^{m}\alpha_{l}y_{l}(\mathbf{x})\right)$$

Advantages and disadvantages

- Exponential error function makes Adaboost very simple algorithm
- Very sensitive to outliers for which $t_n y_m(\mathbf{x})$ is large negative
- Exponential error function cannot be interpreted as log-likelihood of welldefined probabilistic model
- Doesn't generalize straightforwardly to K > 2