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‣ Definition (Gaussian Process):  

A Gaussian process is a collection of random variables, any finite 
number of which is jointly Gaussian distributed 

‣ Or put differently (functional viewpoint): 

‣ Gaussian processes represent distributions over random functions. 

               

‣ The function evaluated at any specific input  is a random variable , 
with  

                            

              

f( ⋅ ) ∼ GP(m( ⋅ ), k( ⋅ , ⋅ ))
x f(x)

#[ f(x)] = m(x)
cov( f(x), f(x′ )) = #[(f(x) − m(x)) (f(x′ ) − m(x′ ))] = k(x, x′ )
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‣ Take any finite set  with corresponding random variables 

 then  

         

‣ Consistency requirement: any subset of  should also be 
Gaussian distributed. 

‣ But that works out because: 

                      

{x1, …, xN}
{f(x1), …, f(xN)}

p
f(x1)

⋮
f(xN)

= '
m(x1)

⋮
m(xN)

),
k(x1, x1) . . . k(x1, xN)

⋮ ⋱ ⋮
k(xN, x1) . . . k(xN, xN)

{f(x1), …, f(xN)}

p ([f1
f2]) = ' ([m1

m2], [K11 K12
K21 K22]) p(f1) = ' (m1, K11)
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Functional Viewpoint, why is this a GP?
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‣ Think of a function  drawn from a  as an extremely high-
dimensional vector drawn from an extremely high-dimensional 
multivariate Gaussian distribution 

‣ Each dimension corresponds to an element  

‣ Each entry of the vector is a  for a particular  

‣ How do you sample from a :  

‣ Sample input points   

‣ Construct the Gram matrix  for all sampled . 

‣ Sample vector.     

f( ⋅ ) GP

x ∈ ℝn

f(x) x ∈ ℝn

GP

x ∈ ℝn

K x
f(x1)

⋮
f(xN)

∼ '
m(x1)

⋮
m(xN)

),
k(x1, x1) . . . k(x1, xN)

⋮ ⋱ ⋮
k(xN, x1) . . . k(xN, xN)
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Functions as vectors
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‣ Bayesian linear models:  

                                  

‣ Prior on : 

                                  

‣ Then  is a Gaussian process  

                               

                  

                                                                       

‣ Thus  for any  are jointly Gaussian!

f(x) = ϕ(xTw)

w
p(w) = ' (w |0, Σp)

f(x)
#[ f(x)] = ϕ(x)T#[w] = 0

cov( f(x), f(x′ )) = #[ f(x)f(x′ )] = ϕ(x)T#[wwT]ϕ(x′ )
= ϕ(x)TΣpϕ(x′ )

f(x1), …, f(xN) N

5

Example: Bayesian Linear Regression
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