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‣ Given input  and target , we assumed 

                  with     

‣ So for observations  and  we have  

               ,        ,       

‣ We imposed a prior on : 

                

‣ After observing X and t, we obtained posterior 

               

                                           with      ,        

x t

t = ϕ(x)Tw + ε ε ∼ "(0,β−1)

X =
xT

1
⋮
xT

N

t =
t1
⋮
tN

t = Φw + ε ε ∼ "(0, β−1I) p(t |X, w) = " (t |Φw, β−1I)
w

p(w) = " (w |0, Σp)

p(w |X, t) = p(t |X, w)p(w
p(t |X) = " (w |mN, SN)

mN = βS−1
N ΦTt S−1

N = βΦTΦ + Σ−1
p
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‣ Predictions for new point , after observing  data points 

               

                                     

      with 

               

               

‣ Mean predictions are linear combinations of kernels!

x* N

p(t* |x*, X, t) = ∫ p(t* |x*, w)p(w |X, t) dw

= " (t* |μN(x*), σ2
N(x*))

μN(x*) = ϕ(x*)TmN = βϕ(x*)TS−1
N ΦTt =

N

∑
n=1

βϕ(x*)TS−1
N ϕ(xn)tn

σ2
N(x*) = β−1 + ϕ(x*)TSNϕ(x*)
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Figure 3.8 Examples of the predictive distribution (3.58) for a model consisting of 9 Gaussian basis functions
of the form (3.4) using the synthetic sinusoidal data set of Section 1.1. See the text for a detailed discussion.

we fit a model comprising a linear combination of Gaussian basis functions to data
sets of various sizes and then look at the corresponding posterior distributions. Here
the green curves correspond to the function sin(2πx) from which the data points
were generated (with the addition of Gaussian noise). Data sets of size N = 1,
N = 2, N = 4, and N = 25 are shown in the four plots by the blue circles. For
each plot, the red curve shows the mean of the corresponding Gaussian predictive
distribution, and the red shaded region spans one standard deviation either side of
the mean. Note that the predictive uncertainty depends on x and is smallest in the
neighbourhood of the data points. Also note that the level of uncertainty decreases
as more data points are observed.

The plots in Figure 3.8 only show the point-wise predictive variance as a func-
tion of x. In order to gain insight into the covariance between the predictions at
different values of x, we can draw samples from the posterior distribution over w,
and then plot the corresponding functions y(x,w), as shown in Figure 3.9.
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‣ Linear Bayesian regression suffers from limited expressiveness 

‣ Can become more expressive for larger , where   

‣ However, this also requires more parameters!   (  

‣ It’s expensive to train more expressive models!    (requires inverting  

which is of size ) 

‣ We also need to choose our basis functions at ‘good’ locations 

‣ But we saw that the final mean prediction can be written in equivalent 
kernel form… 

M ϕ(x) ∈ ℝM

w ∈ ℝM)

SN
M × M
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