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Revisit Bayesian linear regression

»  Given input X and target 7, we assumed

t=¢X)'w+e with e~ 40,81

» SoforobservatonsX =| : | andt=| : | we have
XZY\} i tN_ L_'I w'\,\w@ J\ ‘..
t=@®w+e, &~N0,7'D, pit|X,w=us(tDw,p'T)

»  We imposed a prior on w:
p(w)=N <w|0, Zp)

»  After observing X and t, we obtained posterior

p(t| X, wip(w) _
p(t]| X)

with  my = Sy'®@'t, Sy =pd'd 4+ X!

p(w|X,t) = N (w|my, Sy)
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Revisit Bayesian linear regression

» Predictions for new point X*, after observing N data points

p(t*|x* X, t) = "p(t>X< | x*, w)p(w| X, t) dw

= N (1| pp(x*), op(x*))
with

yxE) = P(x*) my = fp(x*)S} DTt = Zﬁqb(x*)Ts B,

Z 4 Cx* 8.0 tn

on(x*) = 71+ P(x*)'S e (x*)

»  Mean predictions are linear combinations of kernels!
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Revisit Bayesian linear regression
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Revisit Bayesian linear regression

>

Linear Bayesian regression suffers from limited expressiveness

(*&\Ve_u/ I UA)

Can become more expressive for larger M, where ¢p(X) € RM
However, this also requires more parameters! (W & IRM)

It’s expensive to train more expressive models!  (requires inverting SN
which is of size M X M)

We also need to choose our basis functions at ‘good’ locations

But we saw that the final mean prediction can be written in equivalent
kernel form...
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