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Continuous latent space

Do ot
»  Dimensionality reduction: model the data in a low dim. space

»  Example: take one grey-scale image of “3” and make multiple
copies by translation and rotation

3

Figure: Synthetic “3” dataset (Bishop 12.1)

»  Pixel space dimension: 100x100 pixels
» Latent space dimension: 3 = 2 (translations) + 1 rotation

» From the 3 latent variables we could generate all 100x100 pixels!
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Example continued

» A more realistic dataset of images will have more degrees of
freedom In the latent space, such as:
»  Scaling
» Digits from 0-9
» Colors
» Different hand-writing styles
»  Etc.
... but still much fewer than 100x100!

» In this example, the latent subspace is a non-linear
transformation of the images

»  We first study linear latent spaces with PCA and later
consider generalizations to the non-linear case
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Principal Component Analysis (PCA)

» Find a linear projection of the data such that the variance Iin
the projected space iIs maximal

» PCA captures the axes of maximal variation in the data,
called principal components

\y
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Principal Component Analysis (PQA)

» Data: X = {x;,...,x,}, x € RP A

)

» Goal: project dataintoaM < D
dimensional space while maximizing
the variance of the projected data

» M is given

v

Mean and covariance defined by

- Z Figure: Maximizing variance of
projections (Bishop 12.2)

S=— 2<x - X)(x, — %)

» Sis symmetnc and positive definite
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1D Projection L’

» Project data int the first latent dimension by a vector u; € RP K a

Zon Y4
'S

» The projection gives the scalar ulTXn, the mean of the projection is ulTi

» We only need its direction, so normalize this component: ||u||* = ulTul =1

» The variance of the projected data is

Lzl 2 i, - uf%y Z (uf(x, — X))’

1
— N 2 lllT(Xn —X)(X, — i)Tul
n=1

1 < _ _
=u| ~ Z x, —X)(x, —X)! |u, =\11{Suf\
n=1 A
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Maximizing the variance of 1 component

\ged Yrx conntrosak
T : T )
» Solve argmax u; Su; subject to uu 1 Uore oo s

" e gl = & g™

» Method of Lagrange multipliers 4 C4) A L) ’C’>
o

» Define Lagrangian L(u;, 4,) = u{ Su, + 4,(ulu, — 1)

> SOlViﬂg for U, means a_L(ul,ﬂl) — Slll — /11111 =0
uj

» We need to solve eigensystem$ u, = AU, &

» So u; and 4, are respectively an eigenvector and eigenvalue of S € REP*D,
T T
: .. U W, = A, U
» The u, is called a principal component. /‘, — A $ =t A Ze 2
= A

\
» The variance of the projected data is ulT Su, =4

» Maximizing variance means we search for the eigenvecor with largest
eigenvalue
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¥ A

" u . / 2 'ﬁ'“
PCA via maximum variance 4
‘ﬁt/ép//
»  We repeat the procedure for M orthogonal vectors and get a AT
projection defined by Uy, = [uy, ..., u,,] € RP*# ‘7;"‘ i (ﬂ—;
»  PCA: compute X and the eigen-decomposition of S. The-projéction |

thenis z = U]{/[(X — X)

» Those are M eigenvectors of S, the principal components. The
eigenvalues are A > 1, > ... > Ay,

»  The matrix S is positive semi-definite, thus v, /1]- > ()

M
»  The (total) variance of the projected data is Tr[Cov|[z]] = Z /1]-
j=1
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Reminder: eigen-decomposition

» When the matrix is symmetric positive semi-definite:
S=UAU" with A =diag{l,,...,1p)
» The eigenvectors are orthonormal and are stored in U = [ul, oo uD]

» All eigenvalues are non-negative and are the elements of the diagonal matrix A

D
» Total variance given by Tr(S) = Tr(UA UY) = Tr(A) = 2 A;
i=1
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Getting the eigenvectors in practice

» Full eigenvalue decomposition is expensive: O(D?)

» Only need up to the M™ component: O(MD?)

» |In python:

M =10
S = np.cov(X)
Um, Lm, Vm = scipy.sparse.linalg.svds(S, k=M

For symmetric positive definite matrices such as S, the SVD
decomyposition IS equivalent to the eigen-decomposition
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How to choose M?

» \We can measure the discarded variance

» For example to preserve 90% of the variance,

nick M such that

1.0

0.8
|
o

M

The proportion of
explained variance

Cumulative Proportion of Variance Explained

Principal Component
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Applications: dimensionality reduction

» When data is defined in high dimension (large D) we
want to project down to lower dimension because:

» Reduce time and storage space required

» For classification/regression: our model will have
less parameters, thus we need less data points
for learning

» Other methods (not covered): feature selection.
PCA is known as a feature extraction method
instead.
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Applications: 2D Visualization (MNIST)
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Feature Decorrelation

» Good side effect of PCA: features have no correlation in
the projected space.

» The covariance matrix of the projected data is diagonal

] & 1 i
— > zz)=— ) U, (x, —X)(x,—X)' Uy,
N n=1 N n=1
= U]@SUM = ULUAUTUM = A,,
%14\
— (\; /*// _ Q =
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Applications: whitening (or sphering)

» Before applying learning algorithms we usually do some pre-
processing:

» e.g. standardization: subtract the mean and divide by the
standard deviation

»  With PCA we can whiten the data, one step more:
» Centre and de-correlate the features:

7= Uﬁ(x — X)

» (Cast features to unit standard deviation by rescaling:
1

z=A,;""Ul (x —X)
7 P M
—>
— O = G-

Machine Learning 1 15




