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‣ Dimensionality reduction: model the data in a low dim. space 

‣ Example: take one grey-scale image of “3” and make multiple 
copies by translation and rotation 

‣ Pixel space dimension: 100x100 pixels 

‣ Latent space dimension: 3 = 2 (translations) + 1 rotation 

‣ From the 3 latent variables we could generate all 100x100 pixels!
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Continuous latent space

Figure: Synthetic “3” dataset (Bishop 12.1)
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‣ A more realistic dataset of images will have more degrees of 
freedom in the latent space, such as: 

‣ Scaling 
‣ Digits from 0-9 
‣ Colors 
‣ Different hand-writing styles 
‣ Etc. 

    … but still much fewer than 100x100! 

‣ In this example, the latent subspace is a non-linear 
transformation of the images 

‣ We first study linear latent spaces with PCA and later 
consider generalizations to the non-linear case
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Example continued
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‣ Find a linear projection of the data such that the variance in 
the projected space is maximal 

‣ PCA captures the axes of maximal variation in the data, 
called principal components
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Principal Component Analysis (PCA)
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‣ Data:  

‣ Goal: project data into a  
dimensional space while maximizing 
the variance of the projected data 

‣  is given 

‣ Mean and covariance defined by 

‣  is symmetric and positive definite

X = {x1, …, xn}, xn ∈ ℝD

M < D

M

S
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Principal Component Analysis (PCA)

S = 1
N

N

∑
n=1

(xn − x)(xn − x)T

x = 1
N

N

∑
n=1

xn Figure: Maximizing variance of 
projections (Bishop 12.2)
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‣ Project data int the first latent dimension by a vector  

‣ The projection gives the scalar , the mean of the projection is  

‣ We only need its direction, so normalize this component:  

‣ The variance of the projected data is

u1 ∈ ℝD

uT
1 xn uT

1 x

∥u1∥2 = uT
1 u1 = 1
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1D Projection

1
N
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∑
n=1

(uT
1 xn − uT

1 x)2 = 1
N

N

∑
n=1

(uT
1(xn − x))2

= 1
N

N

∑
n=1

uT
1(xn − x)(xn − x)Tu1

= uT
1 ( 1

N

N

∑
n=1

(xn − x)(xn − x)T) u1 = uT
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‣ Solve      subject to    

‣ Method of Lagrange multipliers 

‣ Define Lagrangian  

‣ Solving for  means  

‣ We need to solve eigensystem  

‣ So  and  are respectively an eigenvector and eigenvalue of ! 

‣ The  is called a principal component. 

‣ The variance of the projected data is  

‣ Maximizing variance means we search for the eigenvecor with largest 
eigenvalue

argmax
u1

uT
1 S u1 uT

1 u1 = 1

L(u1, λ1) = uT
1 S u1 + λ1(uT

1 u1 − 1)

u1
∂

∂u1
L(u1, λ1) = S u1 − λ1u1 = 0

S u1 = λ1u1
u1 λ1 S ∈ ℝD×D

u1

uT
1 S u1 = λ1
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Maximizing the variance of 1 component
Need this constraint
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‣ We repeat the procedure for  orthogonal vectors and get a 
projection defined by  

‣ PCA: compute  and the eigen-decomposition of . The projection 
then is  

‣ Those are  eigenvectors of , the principal components. The 
eigenvalues are  

‣ The matrix  is positive semi-definite, thus  

‣ The (total) variance of the projected data is 

M
UM = [u1, …, uM] ∈ RD×M

x S
z = UT

M(x − x)

M S
λ1 ≥ λ2 ≥ … ≥ λM

S ∀j : λj ≥ 0

Tr[Cov[z]] =
M

∑
j=1

λj

8

PCA via maximum variance
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‣ When the matrix is symmetric positive semi-definite: 

                        with      

‣ The eigenvectors are orthonormal and are stored in  

‣ All eigenvalues are non-negative and are the elements of the diagonal matrix  

‣ Total variance given by 

S = U Λ UT Λ = diag{λ1, …, λD}

U = [u1, …, uD]
Λ

Tr(S) = Tr(U Λ UT) = Tr(Λ) =
D

∑
i=1

λi
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Reminder: eigen-decomposition
a:# =L:b. war

change of basis → rotation
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‣ Full eigenvalue decomposition is expensive:  

‣ Only need up to the  component:  

‣ In python: 

For symmetric positive definite matrices such as , the SVD 
decomposition is equivalent to the eigen-decomposition

O(D3)

Mth O(MD2)

S
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Getting the eigenvectors in practice
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‣ We can measure the discarded variance 

‣ For example to preserve 90% of the variance, 
pick  such thatM
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How to choose M?
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‣ When data is defined in high dimension (large ) we 
want to project down to lower dimension because: 

‣ Reduce time and storage space required 

‣ For classification/regression: our model will have 
less parameters, thus we need less data points 
for learning  

‣ Other methods (not covered): feature selection. 
PCA is known as a feature extraction method 
instead. 

D
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Applications: dimensionality reduction
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Applications: 2D Visualization (MNIST)

Eigenvectors
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‣ Good side effect of PCA: features have no correlation in 
the projected space.  

‣ The covariance matrix of the projected data is diagonal 

14

Feature Decorrelation
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‣ Before applying learning algorithms we usually do some pre-
processing:  
‣ e.g. standardization: subtract the mean and divide by the 

standard deviation  

‣ With PCA we can whiten the data, one step more:  
‣ Centre and de-correlate the features: 

                                  

‣ Cast features to unit standard deviation by rescaling:  

                             

z = UT
M(x − x)

z = Λ−1/2UT
M(x − x)
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Applications: whitening (or sphering)
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