

Lecture 10.1 - Unsupervised Learning Principal Component Analysis - Variance Maximization

Erik Bekkers

(Bishop 12.1.1)

Slide credits: Thomas Kipf and

Giorgio Patrini

Continuous latent space

- Dimensionality reduction: model the data in a low dim. space
- Example: take one grey-scale image of "3" and make multiple copies by translation and rotation

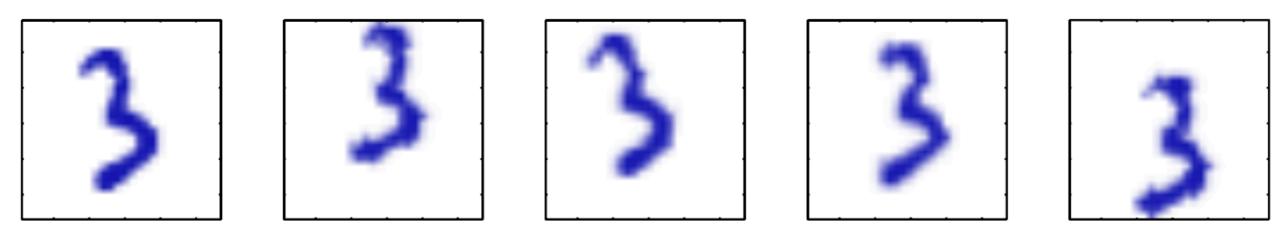


Figure: Synthetic "3" dataset (Bishop 12.1)

- Pixel space dimension: 100x100 pixels
- Latent space dimension: 3 = 2 (translations) + 1 rotation

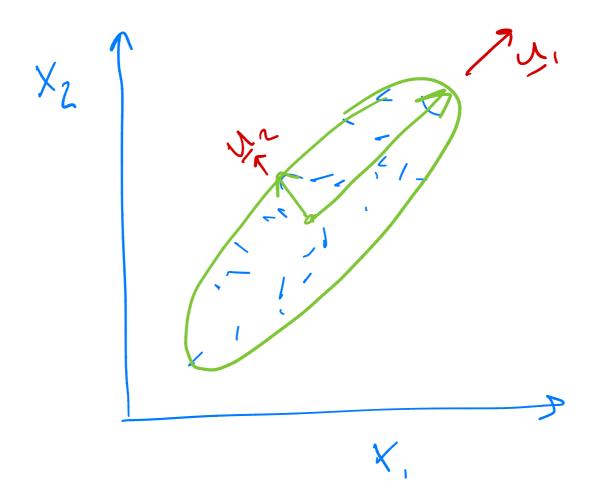
From the 3 latent variables we could generate all 100x100 pixels!

Example continued

- A more realistic dataset of images will have more degrees of freedom in the latent space, such as:
 - Scaling
 - Digits from 0-9
 - Colors
 - Different hand-writing styles
 - Etc.
 - ... but still much fewer than 100x100!
- In this example, the latent subspace is a non-linear transformation of the images
- We first study linear latent spaces with PCA and later consider generalizations to the non-linear case

Principal Component Analysis (PCA)

- Find a linear projection of the data such that the variance in the projected space is maximal
- PCA captures the axes of maximal variation in the data, called principal components



Principal Component Analysis (PCA)

- Data: $\mathbf{X} = \{\mathbf{x}_1, ..., \mathbf{x}_n\}, \ \mathbf{x}_n \in \mathbb{R}^D$
- Goal: project data into a M < D
 dimensional space while maximizing
 the variance of the projected data
- ▶ M is given
- Mean and covariance defined by

$$\overline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$

$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \overline{\mathbf{x}}) (\mathbf{x}_n - \overline{\mathbf{x}})^T$$

 $ightharpoonup \mathbf{S}$ is symmetric and positive definite

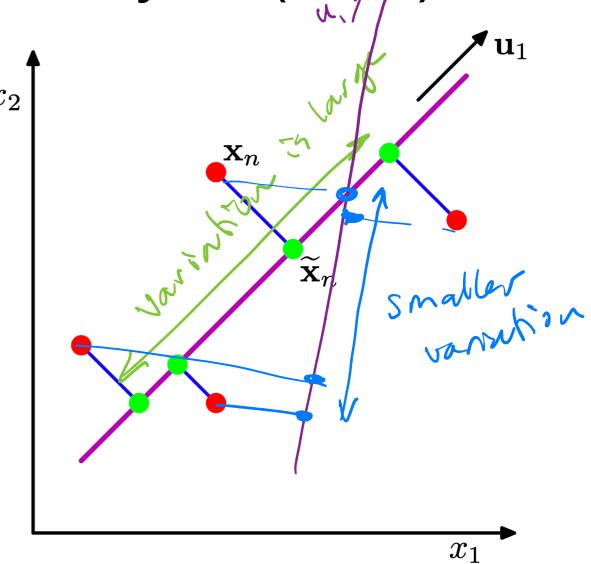


Figure: Maximizing variance of projections (Bishop 12.2)

1D Projection

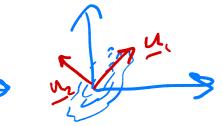
- Project data int the first latent dimension by a vector $\mathbf{u}_1 \in \mathbb{R}^D$ (Fig. 2). The projection gives the scalar $\mathbf{u}_1^T\mathbf{x}$ the
- The projection gives the scalar $\mathbf{u}_1^T \mathbf{x}_n$, the mean of the projection is $\mathbf{u}_1^T \overline{\mathbf{x}}$
- We only need its direction, so normalize this component: $\|\mathbf{u}_1\|^2 = \mathbf{u}_1^T \mathbf{u}_1 = 1$
- The variance of the projected data is

$$\begin{aligned} \mathbf{var}[\mathbf{z}.\mathbf{J}] &= \frac{1}{N} \sum_{n=1}^{N} (\mathbf{u}_{1}^{T} \mathbf{x}_{n} - \mathbf{u}_{1}^{T} \overline{\mathbf{x}})^{2} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{u}_{1}^{T} (\mathbf{x}_{n} - \overline{\mathbf{x}}))^{2} \\ &= \frac{1}{N} \sum_{n=1}^{N} \mathbf{u}_{1}^{T} (\mathbf{x}_{n} - \overline{\mathbf{x}}) (\mathbf{x}_{n} - \overline{\mathbf{x}})^{T} \mathbf{u}_{1} \\ &= \mathbf{u}_{1}^{T} \left(\frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_{n} - \overline{\mathbf{x}}) (\mathbf{x}_{n} - \overline{\mathbf{x}})^{T} \right) \mathbf{u}_{1} = \mathbf{u}_{1}^{T} \mathbf{S} \mathbf{u}_{1} \end{aligned}$$

- Maximizing the variance of 1 component Need this constraint Solve argmax $\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1$ subject to $\mathbf{u}_1^T \mathbf{u}_1 = 1$ the shythink Method of Lagrange multipliers

 Define Lagrangian $L(\mathbf{u}_1, \lambda_1) = \mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 + \lambda_1 (\mathbf{u}_1^T \mathbf{u}_1 1)$
- - Solving for \mathbf{u}_1 means $\frac{\partial}{\partial \mathbf{u}_1} L(\mathbf{u}_1, \lambda_1) = \mathbf{S} \, \mathbf{u}_1 \lambda_1 \mathbf{u}_1 = 0$
 - We need to solve eigensystem $\mathbf{S}\,\mathbf{u}_1 = \lambda_1 \mathbf{u}_1$
 - So \mathbf{u}_1 and λ_1 are respectively an eigenvector and eigenvalue of $\mathbf{S} \in \mathbb{R}^{D \times D}$!
- The \mathbf{u}_1 is called a **principal component**.
- The variance of the projected data is $\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 = \lambda_1$
- Maximizing variance means we search for the eigenvecor with largest eigenvalue

PCA via maximum variance

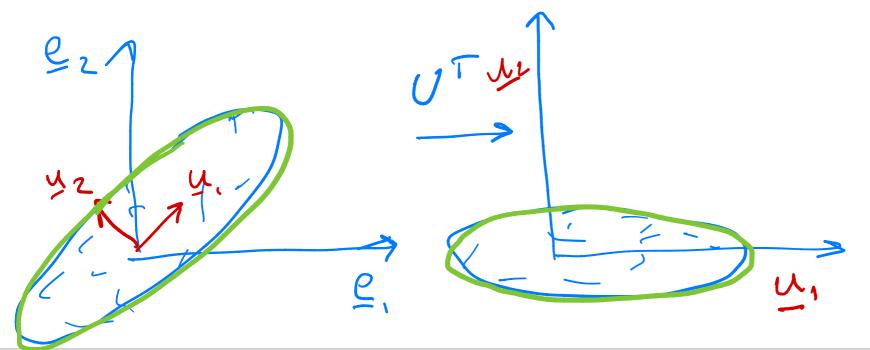


- $\text{We repeat the procedure for } M \text{ orthogonal vectors and get a projection defined by } U_M = [\mathbf{u}_1, ..., \mathbf{u}_M] \in \mathbf{R}^{D \times M}$
- PCA: compute $\overline{\mathbf{x}}$ and the eigen-decomposition of \mathbf{S} . The **projection** then is $\mathbf{z} = \mathbf{U}_M^T(\mathbf{x} \overline{\mathbf{x}})$
- Those are M eigenvectors of S, the principal components. The eigenvalues are $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_M$
- The matrix **S** is positive semi-definite, thus $\forall_j: \lambda_j \geq 0$
- The (total) variance of the projected data is $\text{Tr}[\text{Cov}[\mathbf{z}]] = \sum_{j=1}^{n} \lambda_j$

Reminder: eigen-decomposition

$$\mathbf{S} = \mathbf{U} \Lambda \mathbf{U}^T$$
 with $\Lambda = \text{diag}\{\lambda_1, ..., \lambda_D\}$

- The eigenvectors are **orthonormal** and are stored in $\mathbf{U} = \left[\mathbf{u}_1,...,\mathbf{u}_D\right]$
- All eigenvalues are **non-negative** and are the elements of the diagonal matrix Λ = $\tau_r(\Lambda u^\tau u) = \tau_r(\Lambda I)$
- Total variance given by $\text{Tr}(\mathbf{S}) = \text{Tr}(\mathbf{U} \Lambda \mathbf{U}^T) = \text{Tr}(\Lambda) = \sum_{i=1}^{D} \lambda_i$



Getting the eigenvectors in practice

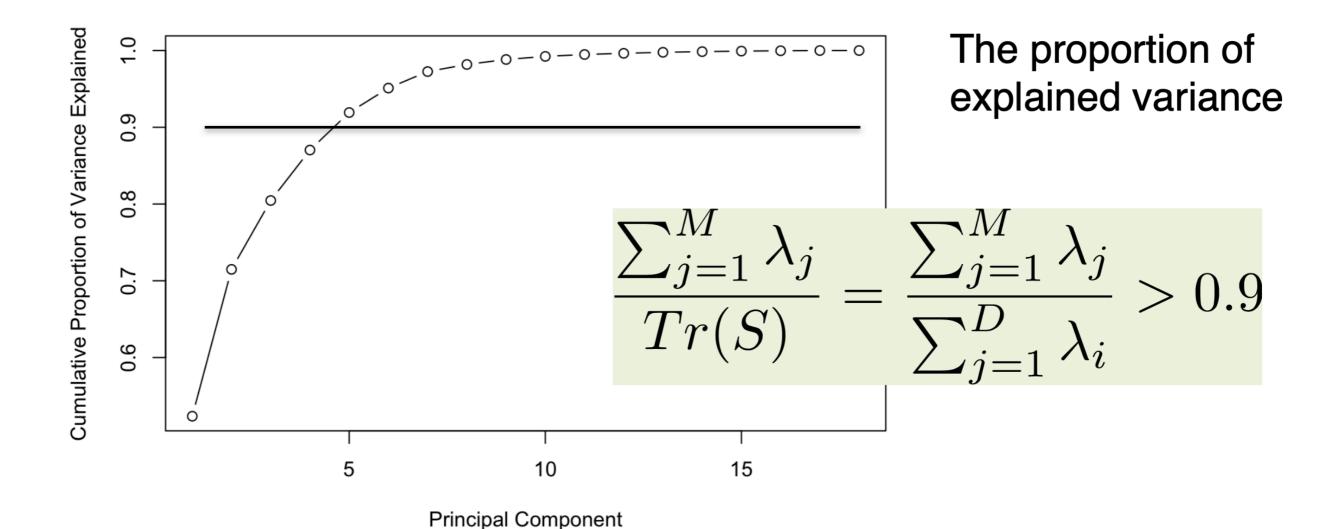
- Full eigenvalue decomposition is expensive: $O(D^3)$
- Only need up to the M^{th} component: $O(MD^2)$
- In python:

```
M = 10
S = np.cov(X)
Um, Lm, Vm = scipy.sparse.linalg.svds(S, k=M)
```

For symmetric positive definite matrices such as **S**, the SVD decomposition is equivalent to the eigen-decomposition

How to choose M?

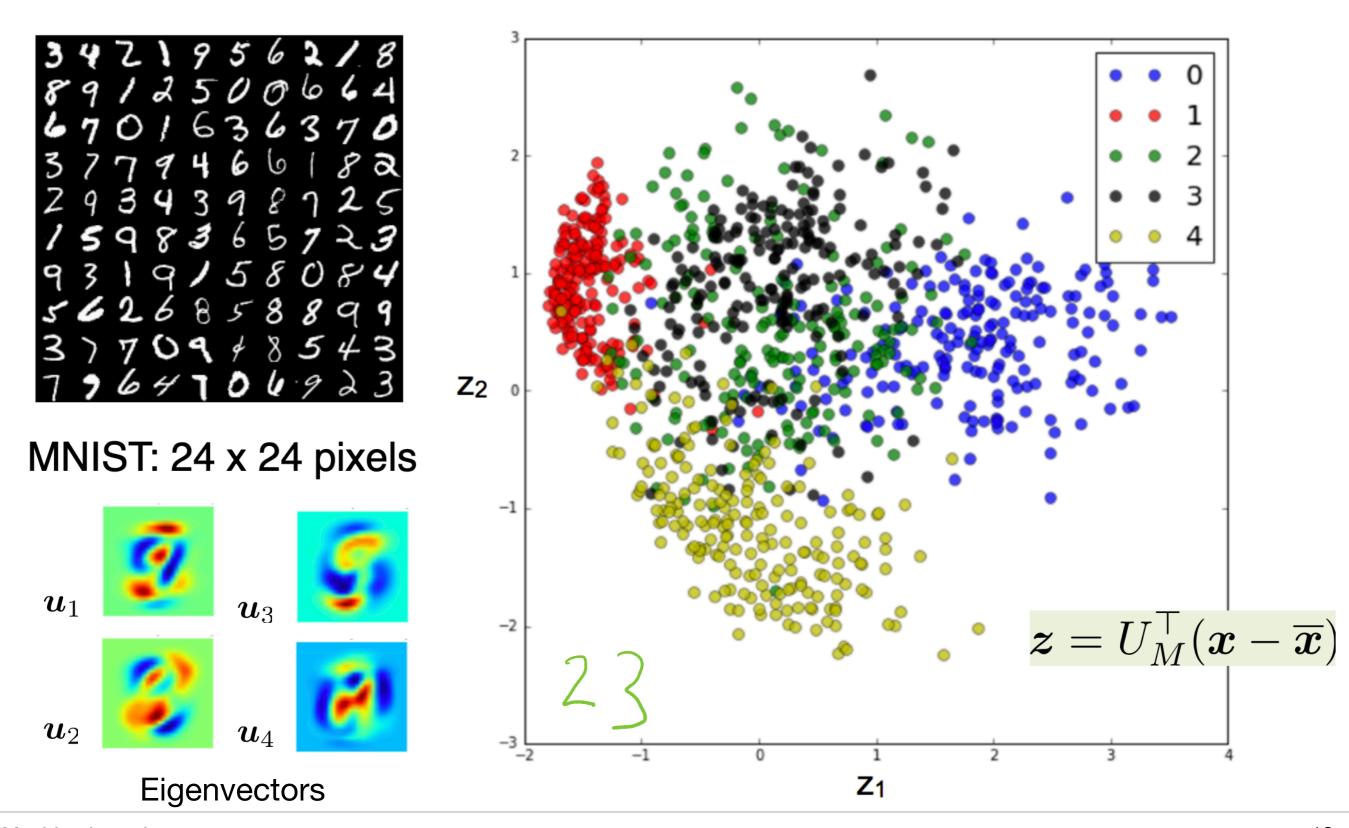
- We can measure the discarded variance
- For example to preserve 90% of the variance, pick M such that



Applications: dimensionality reduction

- When data is defined in high dimension (large D) we want to project down to lower dimension because:
 - Reduce time and storage space required
 - For classification/regression: our model will have less parameters, thus we need less data points for learning
- Other methods (not covered): feature selection.
 PCA is known as a feature extraction method instead.

Applications: 2D Visualization (MNIST)

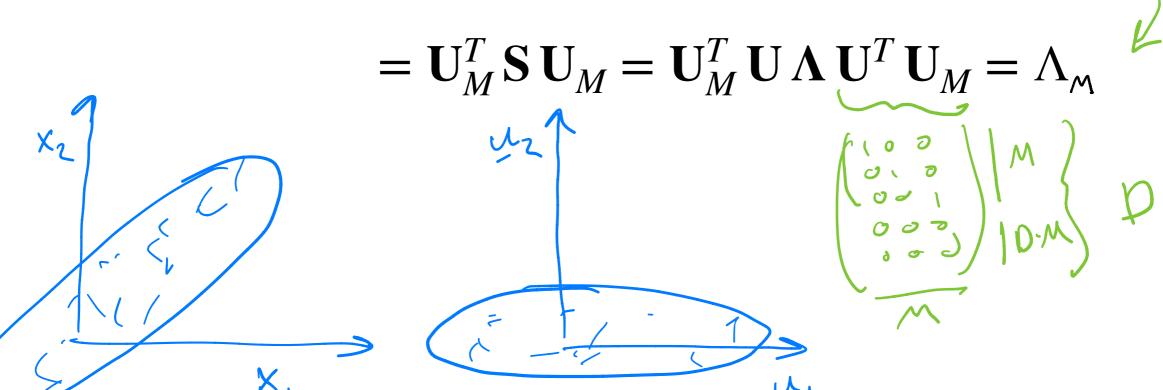


Feature Decorrelation

- Good side effect of PCA: features have **no correlation** in the projected space.
- The covariance matrix of the projected data is diagonal

$$\frac{1}{N} \sum_{n=1}^{N} \mathbf{z}_n \mathbf{z}_n^T = \frac{1}{N} \sum_{n=1}^{N} \mathbf{U}_M^T (\mathbf{x}_n - \overline{\mathbf{x}}) (\mathbf{x}_n - \overline{\mathbf{x}})^T \mathbf{U}_M$$

$$= \mathbf{U}_{M}^{T} \mathbf{S} \mathbf{U}_{M} = \mathbf{U}_{M}^{T} \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{T} \mathbf{U}_{M} = \mathbf{\Lambda}_{M}$$



Applications: whitening (or sphering)

- Before applying learning algorithms we usually do some preprocessing:
 - e.g. standardization: subtract the mean and divide by the standard deviation
- With PCA we can whiten the data, one step more:
 - Centre and de-correlate the features:

$$\mathbf{z} = \mathbf{U}_{M}^{T}(\mathbf{x} - \overline{\mathbf{x}})$$

Cast features to unit standard deviation by rescaling:

