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Probability theory
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Provides a consistent framework for the 
quantification and manipulation of uncertainty.

Probability theory  (Bishop)

Uncertainty in pattern recognition

• Noise on measurements. 

• Finite size datasets.
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Probability theory
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Frequentist interpretation

• Probability of event: fraction of times event 
occurs in experiment 

Bayesian approach

• Probability: quantification of plausibility or 
the strength of the belief of an event.
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Random variables
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Random variable  X   

• Stochastic variable sampled from a set of possible 
outcomes 

• Discrete or continuous 

• Probability distribution p(X).  

Examples of discrete random variables:

• Throwing a dice: X= 

• Flipping a coin: X=
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2 random variables  

N trials: sample both X and Y. 

Joint probability 

Marginal probability of X: 

                                                                                             

Two discrete random variables (I)
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Figure: 2 random variables (Bishop 1.10)
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Two discrete random variables (II)
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• 2 random variables 

• Conditional probability of Y given X:

• Remember: 

.
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Figure: 2 random variables (Bishop 1.10)
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Example: Marginal & Conditional distributions
p(X,Y )

X

Y = 2

Y = 1

p(Y )

p(X)

X X

p(X |Y = 1)

Figure: Marginal and conditional distributions (Bishop 1.11)
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‣ Probability of            falling in the interval                 is given 
by 

‣            probability density over x 

‣ Probability over finite interval 

‣ Positivity: 

‣ Normalization:  

‣ Change of variables x = g(y), probabilities in                   
must be transformed to                    
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Continuous Random Variables
x 2 R

p(x) :

p(x 2 (a, b)) =

p(x) � 0

(x, x + dx)

(x, x + dx)
(y, y + dy)

px(x)dx = py(y)dy py(y) =
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Continuous Random Variables
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Figure: probability density and cumulative distribution function (Bishop 1.12)
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The Rules of Probability Theory

Discrete Continous

Additivity

Positivity

Normalization

Sum Rule

Product Rule

p(X 2 A) =
X

x2A

p(x)

p(x) � 0 p(x) � 0

Z

X
p(x)dx = 1

p(x) =
X

y2Y
p(x, y)

p(x, y) = p(x|y)p(y)p(x, y) = p(x|y)p(y)

For random variables X ∊ ! and Y ∊ ":
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‣ Product rule 

‣ Symmetry property 

‣  Bayes rule 

‣ Denominator:
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Bayes Theorem

p(x, y) = p(x|y)p(y)
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‣ p(y) : the prior probability of Y = y   

‣ p(y | x) : the posterior probability of Y = y 

‣ p(x | y) : the likelihood of X = x given Y = y 

‣ p(x) : the evidence for X = x
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Bayes Theorem

p(y|x) = p(x|y)p(y)
p(x)

Bayes rule
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