

UNIVERSITY OF AMSTERDAM Informatics Institute

Machine Learning 1

Lecture 1.4 - Probability Theory - Bayes Theorem

Erik Bekkers

(Bishop 1.2.0 - 1.2.1)

Slide credits: Patrick Forré and Rianne van den Berg

Probability theory

Probability theory (Bishop)

Provides a consistent framework for the quantification and manipulation of uncertainty.

Uncertainty in pattern recognition

- Noise on measurements.
- Finite size datasets.

Probability theory

Frequentist interpretation

Probability of event: fraction of times event occurs in experiment

Bayesian approach

• Probability: quantification of plausibility or the strength of the belief of an event.

Random variables

Random variable X

- Stochastic variable sampled from a set of possible outcomes
- Discrete or continuous
- Probability distribution p(X).

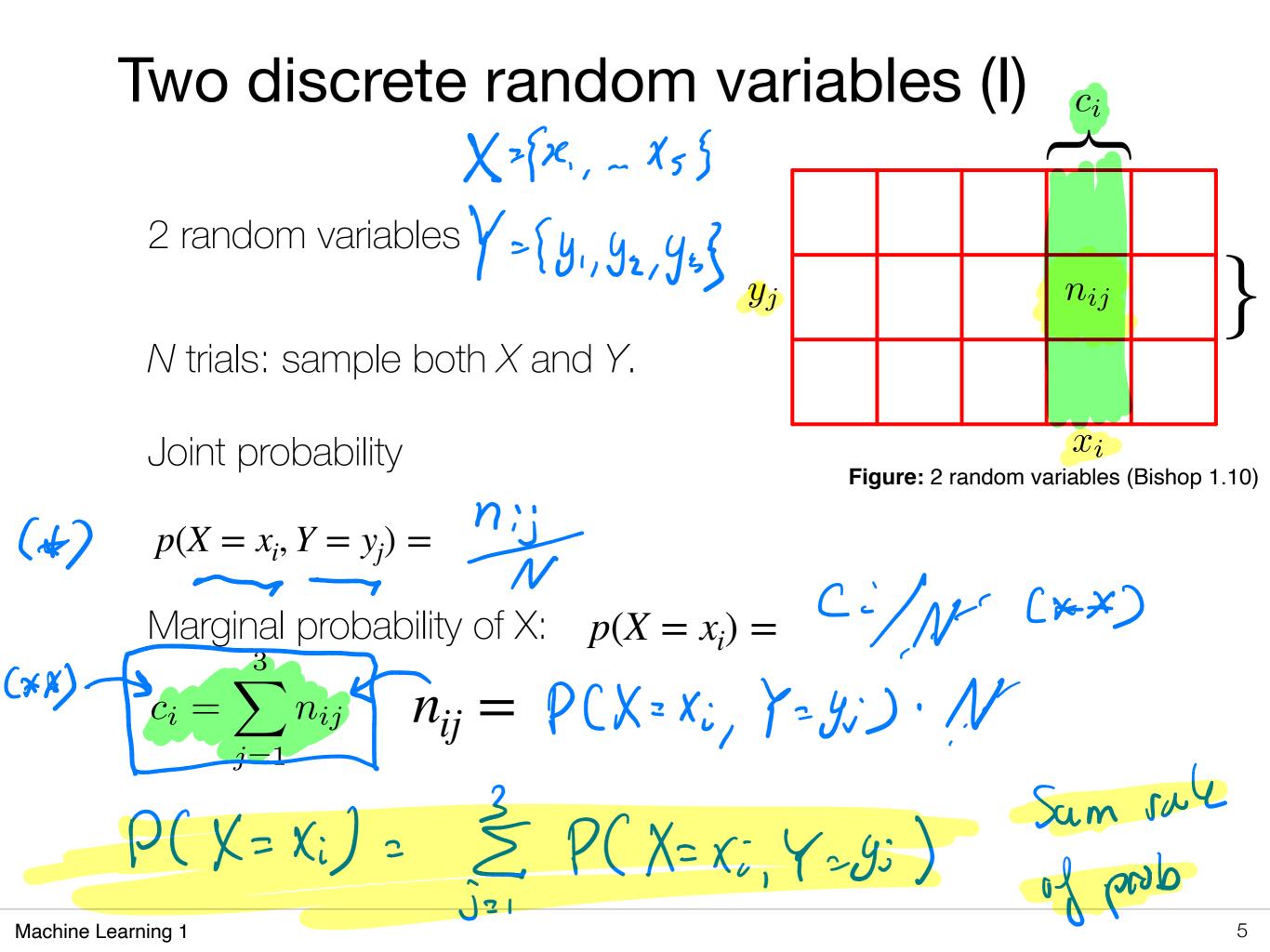
Examples of discrete random variables:

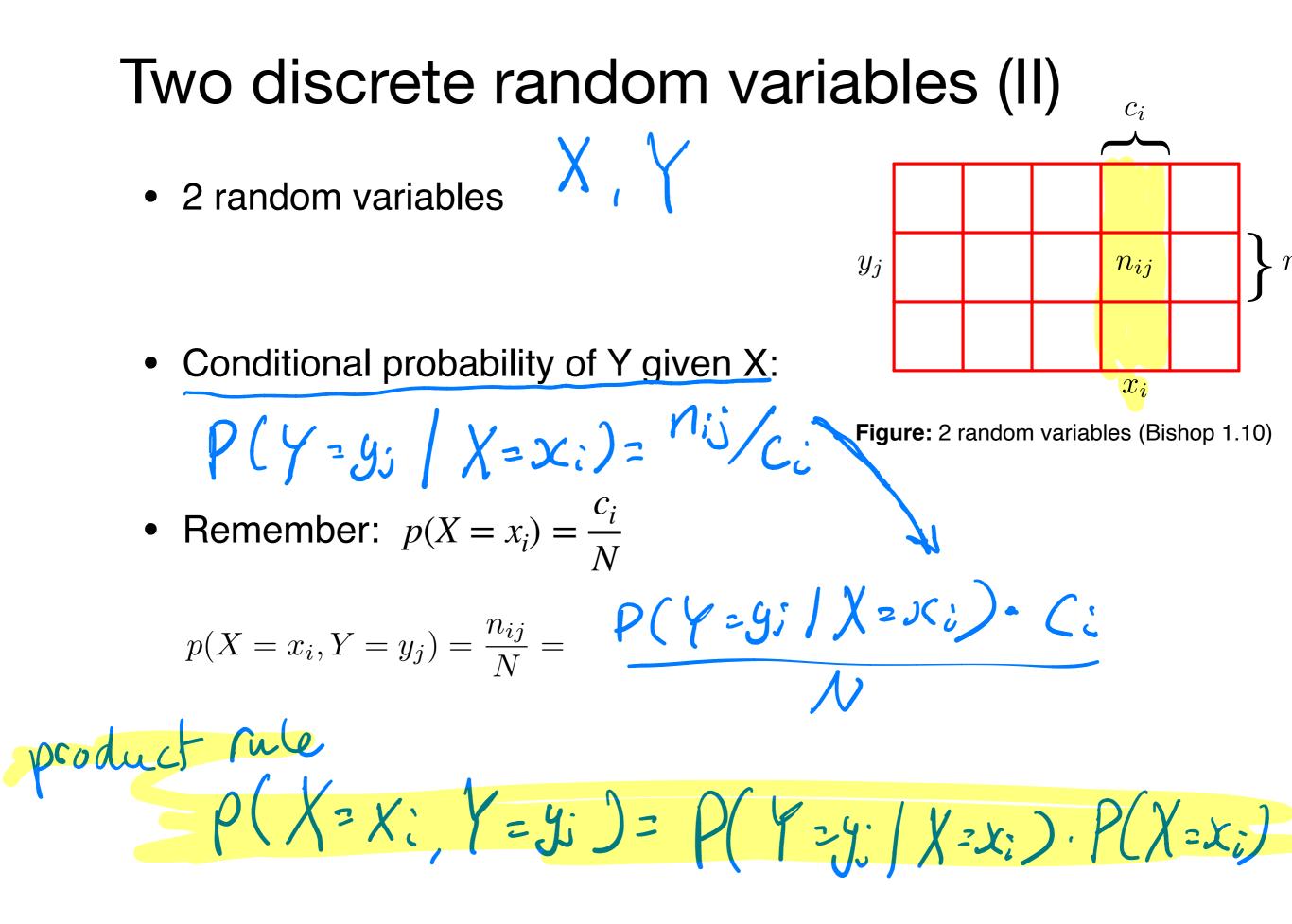
- Throwing a dice: X= { 1, 2, -, 6 }
- Flipping a coin: X= [heads, bails]

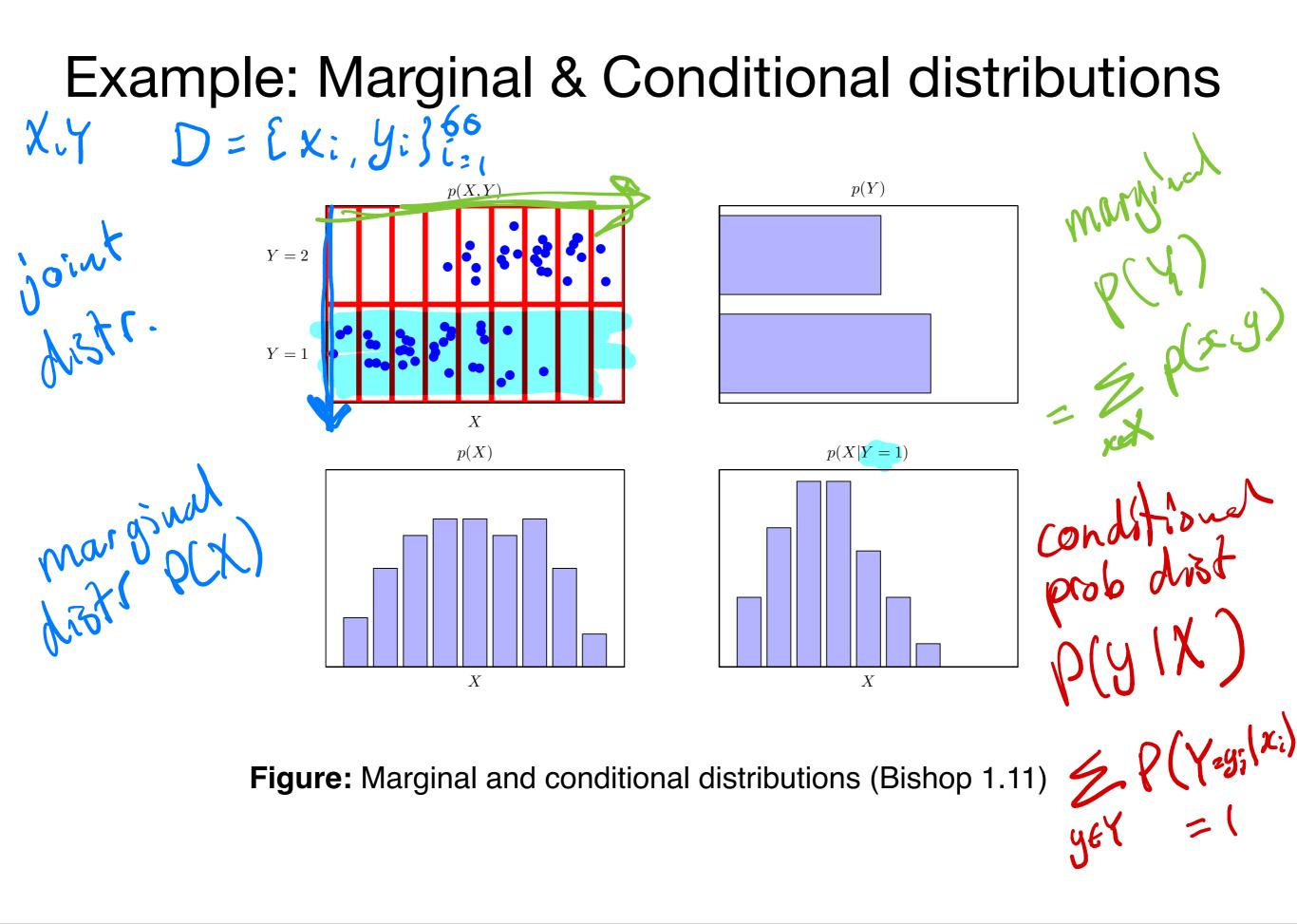
 $p(x) \ge 0, x \in X$

p(x) = = = txeX

p(X: heads) = 2 p(X: tails) = 2







Continuous Random Variables

- Probability of $x \in \mathbb{R}$ falling in the interval (x, x + dx) is given by p(x)dx
- p(x): probability density over x
- Probability over finite interval $p(x \in (a, b)) = \int p(x) dx$
- Positivity: $p(x) \ge 0$

• Normalization: $\int \rho(x) dx = 1$

• Change of variables x = g(y), probabilities in (x, x + dx)must be transformed to (y, y + dy)

ust be transformed to
$$(y, y + dy)$$

 $p_x(x)dx = p_y(y)dy \qquad \longrightarrow \qquad p_y(y) = P_x(x) \int \frac{dx}{dy}$

Continuous Random Variables

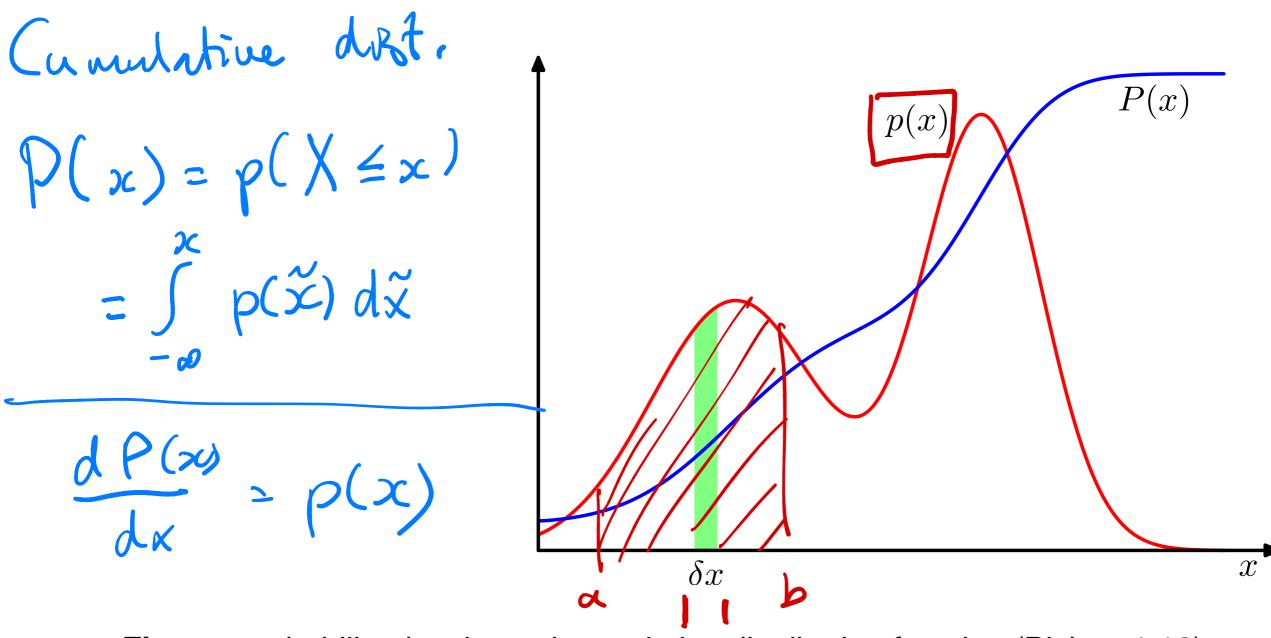


Figure: probability density and cumulative distribution function (Bishop 1.12)

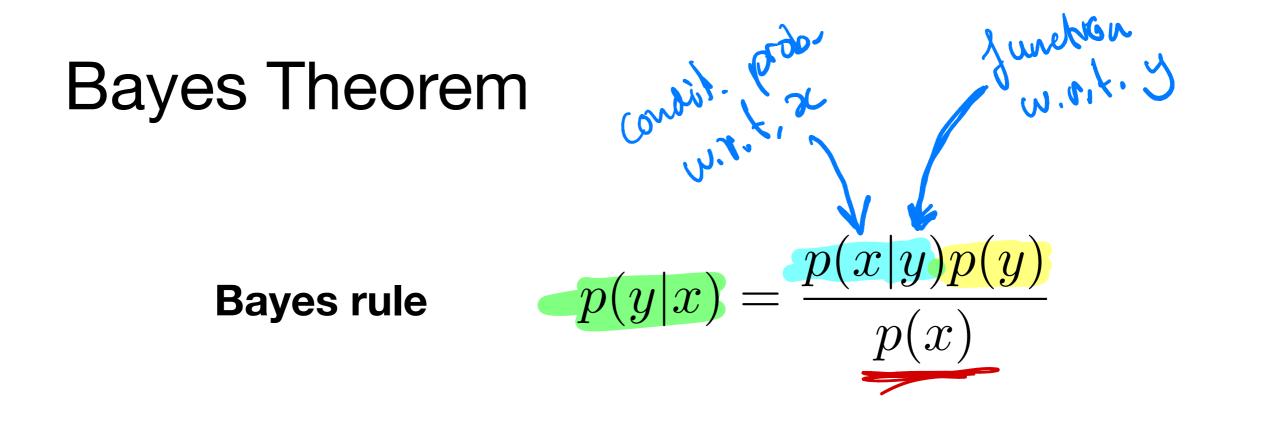
The Rules of Probability Theory

For random variables $X \in X$ and $Y \in Y$:

	Discrete	Continous
Additivity	$p(X \in A) = \sum_{x \in A} p(x)$	p(sceland)) = \$p(x)dx
Positivity	$p(x) \ge 0$	$p(x) \ge 0$
Normalization	$\sum_{x \in X} p(x) = 1$	$\int_{\mathcal{X}} p(x) dx = 1$
Sum Rule	$p(x) = \sum_{y \in \mathcal{Y}} p(x, y)$	$p(x, y) = \int p(x y) dy$ $p(x, y) = p(x y)p(y)$
Product Rule	p(x, y) = p(x y)p(y)	p(x,y) = p(x y)p(y)

Bayes Theorem

• Product rule p(x,y) = p(x|y)p(y)• Symmetry property p(y,x) = p(y|x) p(x)Bayes rule $p(y|x) = p(x|y) \cdot p(y)$ Denominator: $\sum_{y \in Y} p(y|x) = ($ $p(x) \ge p(x|y)p(y) = 1 \iff p(x) = \sum_{y \in Y} p(x)$



- p(y): the prior probability of Y = y prior / before observing
- p(y | x): the posterior probability of Y = y of y observing x
- p(x | y): the likelihood of X = x given Y = y
- p(x): the evidence for X = x